
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

WYDZIAŁ ELEKTRONIKI, INFORMATYKI I TELEKOMUNIKACJI

KATEDRA INFORMATYKI

Rozprawa doktorska

Concurrent Execution Models for Agent-Based Computing Systems

Author: Daniel Krzywicki
Degree programme: Informatyka
Main Supervisor: dr hab. inż. Marek Kisiel-Dorohinicki, prof. AGH
Second Supervisor: dr inż. Roman Dębski

Kraków, 2018

Uprzedzony o odpowiedzialności karnej na podstawie art. 115 ust. 1 i 2 ustawy z dnia
4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (t.j. Dz.U. z 2006 r. Nr 90,
poz. 631 z późn. zm.): „Kto przywłaszcza sobie autorstwo albo wprowadza w błąd co do au-
torstwa całości lub części cudzego utworu albo artystycznego wykonania, podlega grzywnie,
karze ograniczenia wolności albo pozbawienia wolności do lat 3. Tej samej karze podlega,
kto rozpowszechnia bez podania nazwiska lub pseudonimu twórcy cudzy utwór w wersji ory-
ginalnej albo w postaci opracowania, artystycznego wykonania albo publicznie zniekształca
taki utwór, artystyczne wykonanie, fonogram, wideogram lub nadanie.”, a także uprzedzony
o odpowiedzialności dyscyplinarnej na podstawie art. 211 ust. 1 ustawy z dnia 27 lipca 2005 r.
Prawo o szkolnictwie wyższym (t.j. Dz. U. z 2012 r. poz. 572, z późn. zm.): „Za narusze-
nie przepisów obowiązujących w uczelni oraz za czyny uchybiające godności studenta stu-
dent ponosi odpowiedzialność dyscyplinarną przed komisją dyscyplinarną albo przed są-
dem koleżeńskim samorządu studenckiego, zwanym dalej «sądem koleżeńskim».”, oświadczam,
że niniejszą pracę dyplomową wykonałem(-am) osobiście i samodzielnie i że nie korzystałem(-
am) ze źródeł innych niż wymienione w pracy.

Acknowledgments

I would like to express my very great appreciation to my main supervisor, dr hab. inż. Marek Kisiel-

Dorohinicki, prof. AGH, for the inspiration to explore scientific research and his invaluable help in guid-

ing my scientific efforts throughout all my doctoral years. Thank you for your knowledge, patience, and

constructive suggestions during the planning and development of this research work

I am particularly grateful for the assistance given by my second supervisor, dr inż. Roman Dębski,

without whom this doctoral dissertation could not have been written. Thank you for your willingness to

give your time so generously, for your encouragement and constructive recommendations.

My special gratitude goes to dr hab. inż. Aleksander Byrski, prof. AGH for his professional guidance

and valuable support.

I also wish to thank the employees of the Computer Science Department at AGH, especially

dr. inż. Wojciech Turek, dr inż. Kamil Piętak and mgr inż. Łukasz Faber for their support, kindness

and successful cooperation.

I direct separate, equally important thanks to my wife Katarzyna, for her constant support and en-

couragement throughout my study. Finally, I wish to thank my parents for awakening my curiosity for

science and supporting me.

English Summary

Multi-Agent Systems (MAS) are a bottom-up approach to the modeling of complex problems. In-

stead of explicitly defining the behavior of a complex system as a whole, one only describes the behavior

of the simple constituents of the system. In this approach, complex system behaviors are said to emerge

as a result of the interactions between these basic components.

The following dissertation concerns computationally demanding multi-agent systems, in which the

number of agents is very large and the interactions between them are intensive or non-trivial. Interac-

tions are intensive when they occur very often or when many calculations are needed to determine their

outcomes. They are non-trivial when it is not possible to predict beforehand and in a general way which

agents will interact with each other.

The main subject of this research is the concurrency of such interactions between agents, understood

as the way agents perceive their interactions and the effects of these. The manner in which interactions

between agents are organized is referred to in this dissertation as their concurrent execution model.

Various concurrent execution models are possible and differ both in the way information propagates in

the system (i.e. causality as it is observed by the agents), as well as in their technical characteristics, such

as their amenability to parallelization and their scalability. The aim of this research is to investigate how

different concurrent execution models affect the properties of an agent-based computation, both in terms

of the behavior of the algorithm and of the efficiency of the computation.

This research is focused on Evolutionary Multi-Agent Systems (EMAS) as an example of such com-

putationally intensive multi-agent systems. EMAS consist in combining multi-agent systems and evolu-

tionary algorithms in order to solve difficult optimization problems. In contrast to classical evolutionary

algorithms, selective pressure, which is one of the main mechanisms of evolution, is not centrally en-

forced, but instead is an emergent property resulting from the interaction of independent agents.

EMAS are interesting in the context of this research, because the organization of agents’ interactions

has a significant impact on the behavior of the algorithm. For example, one possible organization is to

select at each step one random pair of agents for them to compete or reproduce. An alternative approach

could be to separate the entire population into pairs of agents, and, after an independent execution of the

interactions of each pair, merge the resulting agents into a new population. Depending on the choice, the

dynamics of evolution will be different. In the first case, the outcome of the interaction is visible imme-

diately to all other agents, so the diffusion of genes in the population will be faster. However, depending

on the way pairs of agents are selected, some agents may have more opportunities to reproduce, which

7

8

introduces additional, uncontrolled selective pressure. In the second case, the population changes more

uniformly; at each step, each agent has one opportunity to reproduce. However, it must wait for the others

before being able to make another interaction, so the overall throughput of the simulation can be lower.

In general, it is difficult to predict which variant will be more effective in solving a particular opti-

mization problem. However, most of the available software frameworks used to implement agent systems

impose a specific concurrent execution model. The semantics of the multi-agent system, i.e. the decom-

position into basic constituents and the definition of their elementary behavior, must be expressed within

this model and is closely coupled to it. In order to be able to compare different concurrent execution

models for the same algorithm, I introduce in this dissertation a formalism which makes it possible to

separate the semantics of an agent-based algorithm from its execution model. This formalism consists in

defining the semantics of the agent algorithm with the help of two functions: a behavior function specify-

ing agent behavior based on their state, and a meetings function describing the interaction between agents

with similar behavior. The execution model then comes down to the way these functions are applied on

a set of agents.

As part of this dissertation, I propose and analyze several concurrent execution models based on

this formalism:

– The first model corresponds to a typical, iterative implementation of an agent-based computation:

in every step, the population is divided into groups with similar behavior using the behavior func-

tion. Then, each group is transformed individually using the meeting function. Agents appearing

as a result of the meetings of all the groups are combined into a new population.

– The second execution model is based on the actor model of concurrency. In simplified terms, an

actor can be understood as a process which requires few resources, can execute independently and

potentially in parallel with other actors, and communicates with them only by exchanging mes-

sages (and not by modifying some shared state). In this model, a separate actor corresponds to

every agent, every possible behavior, and every interaction. Within their actors, agents cyclically

determine their behavior using the behavior function and send a message to the actor represent-

ing this behavior. That actor mediates in matching the agents into pairs and creates a new actor

representing the interaction. The interaction actor applies the meetings function. As a result of the

interaction, a message is sent to the actors representing the participating agents in order to update

their state, and new agents/actors can be created or existing ones deleted.

– The third model is based on parallel Algorithmic Skeletons In short, this approach consists in a

static analysis of a program in order to find patterns that can be replaced with an alternative, more

effective implementation, without changing the behavior of the program. For example, consider

a function that takes an array as an input, and transforms each element independently to create

an output array. An implementation that transforms each element in turn can be converted into an

implementation that performs all the transformations in parallel on multiple processors, without

changing the behavior of the function itself. The implementation of the third model is thus the

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

9

effect of applying this type of program transformation in the first model in order to introduce

parallel processing where possible. The overall structure remains similar, however.

– The fourth execution model is an application of reactive streams. Such streams consist in a graph

of stages through which data flows. Each stage transforms subsequent input elements and sends

them to the next stages. Reactive streams are characterized by the fact that the stages are able

to coordinate on the rate of production and consumption of elements, i.e. the throughput may

be different in various parts of the stream. In practice, this means that within each stage, one

input element may result in zero, one, or many output elements being emitted downstream. In this

execution model, the agents correspond to elements flowing in a closed, recursive stream (that is,

output elements are passed back to the input). Depending on the behavior function, the flows of

agents are split into substreams corresponding to specific behaviors. Due to the variable throughput

available in a reactive stream, the flow of agents in each sub-stream can be locally compressed,

which allows them to interact by applying the meetings function on groups of subsequent agents.

A solution within this model enables to change the order of elements in the stream, which allows

for controlling the concurrency of interactions as observed by the agents.

All above concurrent execution models are subjected to experimental evaluation by applying them

to an optimization problem. One of the main metrics recorded is the quality of the best solution found

depending on the number of interactions, i.e. the effectiveness of the algorithm. This metric allows for

differentiating between models, regardless of the number or type of processors used in the calculation.

In this respect, the actor-based and the stream-based models achieve significantly better results than

the others. In addition, the experiments show that the right choice of parameters in the stream-based

execution model can recreate the characteristics of the other models - in other words, it is a more general

solution, as it can simulate other models

To sum up, I show in this research that the concurrent execution model of agent interactions can be

decoupled from the semantics of the algorithm itself. This makes it possible to meaningfully compare

alternative execution models for the same algorithm and, potentially, make an informed choice to best

match a specific hardware architecture or problem size. Among the models being considered, the one

based on reactive streams proves to be the most promising, both in terms of efficiency and functionality.

The effects of the research presented in this dissertation could help to improve the existing software used

for agent-based computing and, consequently, allow the modeling of more complex problems.

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

10

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Streszczenie w języku polskim

Systemy wieloagentowe (ang. Multi-Agent Systems, MAS) są oddolnym podejściem do modelowa-

nia złożonych problemów. Zamiast definiować wprost złożone zachowania systemu jako całość określa

się jedynie proste zachowania jego elementarnych składowych. W podejściu tym, złożone zachowania

systemu pojawiają się w sposób zwany emergentnym, w wyniku oddziaływań między jego składowymi.

Tematyka niniejszej rozprawy dotyczy wymagających obliczeniowo systemów agentowych,

w których liczba agentów jest bardzo duża, a oddziaływania między nimi są intensywne lub nietry-

wialne. Oddziaływania są intensywne, gdy następują bardzo często lub gdy do określenia ich skutków

potrzebne jest wykonanie czasochłonnych obliczeń. Nietrywialne są zaś wtedy, gdy nie jest możliwe

przewidzenie a priori i w sposób ogólny tego, którzy agenci będą wchodzić ze sobą w interakcje.

Głównym przedmiotem moich badań jest współbieżność oddziaływań między agentami rozumiana

jako sposób, w jaki agenci postrzegają swoje oddziaływania oraz ich skutki. Sposób, w jaki zorgani-

zowane są interakcje między agentami zwany jest w niniejszej pracy modelem współbieżnego wykonania.

Możliwe są różne modele współbieżnego wykonania, różniące się zarówno sposobem propagacji infor-

macji w systemie, czyli tym, jakie związki przyczynowo-skutkowe mogą być obserwowane przez agen-

tów, jak również właściwościami technicznymi, takimi jak podatność na zrównoleglenie i skalowalność.

Celem niniejszej pracy jest zbadanie, w jaki sposób różne modele współbieżnego wykonania wpływają

na właściwości systemu, zarówno pod kątem zachowania algorytmu, jak i efektywności obliczeń.

Przykładem wymagających obliczeniowo systemów agentowych, na którym skupiam swoje bada-

nia, są Ewolucyjne Systemy Wieloagentowe (ang. Evolutionary Multi-Agent Systems, EMAS). Pole-

gają one na połączeniu elementów systemów wieloagentowych i algorytmów ewolucyjnych w celu

rozwiązywania trudnych problemów optymalizacyjnych. W przeciwieństwie do klasycznych algoryt-

mów ewolucyjnych w EMAS presja selekcyjna, czyli jeden z głównych mechanizmów ewolucji, nie jest

wprowadzona odgórnie, lecz pojawia się jako zjawisko emergentne wynikające z interakcji nieza-

leżnych agentów.

EMAS są interesujące w kontekście moich badań, gdyż organizacja interakcji agentów ma istotny

wpływ na działanie algorytmu; na przykład, dynamika ewolucji będzie inna, gdy w każdym kroku jedna

losowa para agentów będzie współzawodniczyć albo się rozmnażać, niż gdy cała populacja zostanie

rozdzielona na pary w jednym kroku, a po niezależnym wykonaniu wszystkich interakcji agenci zostaną

połączeni w nową populację. W pierwszym przypadku konsekwencje interakcji są widoczne natych-

miast, więc dyfuzja genów w populacji będzie szybsza, ale w zależności od sposobu dobierania par,

11

12

niektórzy agenci mogą mieć więcej okazji na rozmnażanie, co wprowadza dodatkową, niekontrolowaną

presję selekcyjną. W drugim przypadku populacja zmienia się bardziej jednolicie; w każdym kroku

każdy agent ma jedną szansę na reprodukcję, jednak musi czekać na pozostałych przed podjęciem kole-

jnej interakcji.

Nie jest łatwo w sposób ogólny przewidzieć, który wariant będzie skuteczniejszy w rozwiązywaniu

konkretnego problemu optymalizacyjnego. Większość dostępnych środowisk programistycznych służą-

cych do implementowania systemów agentowych narzuca jednak konkretny model współbieżnego wyko-

nania. Semantyka systemu agentowego, czyli podział na elementy składowe i definicja ich elementarnych

zachowań, musi być wyrażona w ramach tego modelu i jest ściśle z nim związana. Aby móc porówny-

wać rożne modele współbieżnego wykonania dla tego samego algorytmu, w ramach niniejszej pracy

wprowadzam formalizm pozwalający rozdzielić semantykę algorytmu agentowego od modelu wyko-

nania interakcji agentów. Formalizm ten polega na zdefiniowaniu semantyki algorytmu agentowego

przy pomocy dwóch funkcji: funkcji zachowania, określającej zachowanie agentów na podstawie ich

stanu, oraz fukcji spotkań, opisującej interakcję między agentami o podobnym zachowaniu. Model wyko-

nania sprowadza się wtedy do organizacji wywołań tych funkcji na zbiorze agentów.

W ramach pracy proponuję i analizuję kilka modeli współbieżnego wykonania:

– Pierwszy model odpowiada typowej, iteracyjnej implementacji obliczenia agentowego: w każdym

kroku populacja dzielona jest na grupy o podobnym zachowaniu przy pomocy funkcji zachowań.

Następnie, każda grupa z osobna jest przekształcana przy pomocy funkcji spotkań. Agenci pojaw-

iający się w wyniku spotkań wszystkich grup łączeni są w nową populację.

– Drugi model wykonania oparty jest na aktorowym modelu współbieżności. W uproszczeniu, ak-

tor może być rozumiany jako wymagający niewielu zasobów proces, który może działać nieza-

leżnie i potencjalnie równolegle z innymi aktorami i komunikuje się z nimi jedynie przez wymi-

anę wiadomości (a nie poprzez modyfikowanie współdzielonego stanu). W tym modelu oddzielny

aktor zostaje przypisany każdemu agentowi, każdemu możliwemu zachowaniu oraz każdej in-

terakcji. W ramach swojego aktora, każdy agent cyklicznie określa swoje zachowanie przy po-

mocy funkcji zachowań i wysyła wiadomość do aktora przypisanego temu zachowaniu. Aktor ten

pośredniczy w dobieraniu agentów w pary, tworząc nowego aktora reprezentującego interakcję.

Aktor interakcji wywołuje funkcję spotkań. W konsekwencji spotkania, do aktorów odpowiadają-

cym agentom wysyłana jest wiadomość zmieniająca ich stan, mogą też być tworzone nowe agen-

ty/aktorzy lub usuwane istniejące.

– Trzeci model wykonania wykorzystuje tzw. równoległe szkielety algorytmiczne (ang. Algorith-

mic Skeletons). W skrócie, podejście to polega na statycznej analizie programu w celu znajdowa-

nia wzorców, które mogą być wymienione na alternatywną, bardziej efektywną implementację,

bez zmiany zachowaniu programu. Na przykład, rozważmy funkcję, która przyjmuje na wejściu

tablicę i przekształca każdy jej element niezależnie w celu stworzenia tablicy wyjściowej. Imple-

mentacja, która przekształca każdy element po kolei, może zostać zamieniona na implementację,

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

13

która dokonuje wszystkich przekształceń równolegle na wielu procesorach, bez zmiany zachowa-

nia samej funkcji. Trzeci model wykonania jest więc efektem zastosowania tego typu transformacji

programów w modelu pierwszym w celu wprowadzenia równoległego przetwarzania tam, gdzie to

możliwe. Zasadniczo struktura pozostaje więc podobna.

– Czwarty model jest zastosowaniem tzw. reaktywnych strumieni danych (ang Reactive Streams).

Strumień taki składa się z grafu etapów, przez które przepływają dane. Każdy etap przekształca

kolejne elementy wejściowe i przesyła je do dalszych etapów. Reaktywne strumienie charak-

teryzują się tym, że etapy potrafią dostosowywać między sobą rytm produkcji i konsumpcji

kolejnych elementów, czyli przepustowość strumienia może się zmieniać. W praktyce oznacza

to, że w każdym etapie jednemu elementowi wejściowemu może odpowiadać zero, jeden albo

wiele elementów wyjściowych. W tym modelu agenci odpowiadają elementom przepływającym

w zapętlonym strumieniu (czyli elementy wyjściowe przekazywane są z powrotem na wejście).

W zależności od funkcji zachowania agenci kierowani są przez podstrumienie odpowiadające

konkretnym zachowaniom. Dzięki zmiennej przepustowości możliwej w reaktywnym strumie-

niu, przepływ agentów w każdym podstrumieniu jest lokalnie kompresowany, co umożliwia ich

interakcję i wywołanie funkcji spotkań na grupach sąsiednich agentów w strumieniu. Wprowad-

zone w tym modelu rozwiązanie pozwala z kolei zmieniać kolejność elementów w strumieniu,

co umożliwia dokładną kontrolę nad współbieżnością obserwowaną przez agentów.

Wszystkie modele współbieżnego wykonania poddaję ocenie eksperymentalnej poprzez zas-

tosowanie ich do obliczeń optymalizacyjnych. Jedną z głównych metryk, którą stosuję, jest jakość

znalezionego rozwiązania w zależności od ilości interakcji, czyli efektywność algorytmu. Metryka ta

okazuje się istotnie inna dla różnych modeli wykonania bez względu na ilość procesorów użytych

w obliczeniu. Pod tym względem modele aktorowy i strumieniowy pozwalają osiągnąć znacząco lep-

sze wyniki niż pozostałe. Dodatkowo, eksperymenty pokazują, że odpowiedni dobór parametrów modelu

strumieniowego potrafi odtworzyć charakterystykę pozostałych modeli - jest więc rozwiązaniem bardziej

ogólnym, gdyż można w nim symulować pozostałe rozwiązania.

Podsumowując, w moich badaniach pokazuję, że model współbieżnego wykonania interakcji agen-

tów może zostać rozdzielony od semantyki samego algorytmu. Umożliwia to porównywanie alternaty-

wnych modeli wykonania dla tego samego algorytmu i, potencjalnie, dostosowywanie modelu wykona-

nia pod konkretną architekturę sprzętową lub rozmiar problemu. Spośród rozważanych modeli wykona-

nia, ten oparty na reaktywnych strumieniach okazuje się najbardziej obiecujący, zarówno pod względem

efektywności jak i funkcjonalności. Efekty prac przedstawionych w niniejszej rozprawie będą mogły

przyczynić się do ulepszenia istniejącego oprogramowania służącego do obliczeń agentowych, a w kon-

sekwencji pozwolić na modelowanie bardziej złożonych problemów.

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Contents

1. Introduction .. 17

1.1. Motivation.. 18

1.2. Research scope and objectives... 19

1.3. Structure of the dissertation... 19

2. Agent Interactions and Execution Models... 21

2.1. Use case: Evolutionary Multi-Agent Systems... 21

2.2. The execution model of agent interactions.. 22

3. Concurrent Execution Models .. 25

3.1. Abstracting the execution model ... 25

3.2. Synchronous execution model... 28

3.3. Execution model based on actors .. 41

3.4. Execution model based on parallel skeletons .. 68

3.5. Execution model based on adaptive dataflows .. 86

4. Overview of Experimental Results ...121

5. Conclusions ...125

5.1. Contributions and achievements..126

Bibliography ...128

16 CONTENTS

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

1. Introduction

Multi-agent systems are a bottom-up approach to the design or modeling of complex systems. Instead

of trying to introduce the expected properties of the system up-front, this approach consists in defining

simple rules governing the behavior of the basic components of the system. The complex properties are

then said to emerge from the interaction of these simple constituents.

Multi-agent systems have been used to model biological systems in areas such as environmental

biology, social sciences or engineering [1, 2]. Multi-agent systems have also been the foundation of the

Software Agent design paradigm, both a precursor and complementary approach to Service Oriented

Architectures and, more recently, Microservices. [3]

In other words, agents are both a domain modeling approach and a software engineering paradigm.

These are two separate, but potentially complementary levels of abstraction. Indeed, the former may be

implemented with the latter, using software such as Jade [4] As software agents are complex and compu-

tationally expensive, they are well suited to systems with low granularity. However, they are inefficient

in the case of systems containing large numbers of agents [5]. Such massive multi-agent systems appear

frequently in the field of numerical simulations, such as crowd and traffic simulation, economical sys-

tems, etc. [6, 7]. Another such area of application is computational intelligence, where agents are used

within meta-heuristics as means of problem solving and decision support [8, 9].

This dissertation focuses on a class of such computationally intensive systems where large numbers

of agents are the basis of the domain model and where their interactions are intensive and non-trivial.

Interactions are intensive when they occur very often or when many calculations are needed to determine

their outcomes. They are non-trivial when it is not possible to predict beforehand and in a general way

which agents will interact with each other.

The main subject of my research is the concurrency of such interactions between agents, understood

as the way agents perceive their interactions and the effects of these, and the parallelism of the execution

of these interactions. The concurrency of agent interactions dictates how agents’ interactions are re-

lated causally during the computation, which is linked to how information propagates in the multi-agent

system. The parallelism of the execution of agent interactions describes whether some distinct agents’

interactions can be executed at the same time as seen by an external observant, for example by running

the computation on a multi-core machine or distributing it across a cluster of machines.

The manner in which interactions between agents are organized is referred to in this paper as their

concurrent execution model. Various concurrent execution models are possible and differ both in the way

18 1.1. Motivation

information propagates in the system (i.e. causality as it is observed by the agents), as well as in their

technical characteristics, such as their amenability to parallelization and their scalability.

The type and degree of concurrency of agent interactions in multi-agent systems determines how

closely they can simulate complex systems. As we are considering computationally intensive simulations,

parallelism is in turn a key factor to scalability and therefore the ability to simulate bigger systems.

1.1. Motivation

In the case of massive, computationally intensive simulations, the domain-level multi-agent system

is usually implemented as a discrete event simulation [10, 11]. Implementations of such multi-agent

systems differ with regard to the granularity of the events in the simulation.

The events can be fine-grained and represent particular agent interactions. In such a case, concurrent

interactions can be modeled by interleaving the handling of different agents’ events. However, introduc-

ing parallelism to such an approach is complex, because it requires to have distinct streams of events

which can be processed independently, for example one stream of events per agent. This in turn makes

reasoning about the causality of agent interactions more complex. For the sake of simplicity and strong

consistency, implementations with fine-grained events are usually single-threaded.

The events can also simply represent the passing of time. In such cases, the simulation is step-based

and the population of agents is simply transformed into a new one at each step. Such a transformation

can sometimes be computed in parallel. However, the concurrency of agent interactions is limited, as the

causality of interactions is very specific: the effects of any interaction in a given step are visible precisely

at the next step.

In both cases, the traditional approach to have both concurrency of interactions and parallel execution

consists in grouping agents into separate agent environments, which become basic units of distribution

[8]. Such environments limit the range of agent interactions, run a synchronous simulation on the inside

and use asynchronous communication on the boundaries. To minimize communication costs, interactions

across these boundaries are minimal. However, a distributed approach is no longer the most efficient

solution on modern massively multi-core hardware, where the cost of communication is much smaller

then in a distributed cluster. Current High Performance Computing infrastructures commonly include

nodes with dozens of cores and these numbers are increasing rapidly [12].

The domain semantics of the multi-agent simulations, i.e. the decomposition into basic constituents

and the definition of their elementary behavior, are often tightly coupled with the execution model of the

underlying software framework. This makes it difficult to compare alternative approaches with regard to

concurrency and parallelism.

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

1.2. Research scope and objectives 19

1.2. Research scope and objectives

The scope of this dissertation are computationally intensive agent-based systems. As an example of

such computationally demanding multi-agent systems, I focus my research on Evolutionary Multi-Agent

Systems (EMAS) [13, 8]. These consist in combining multi-agent systems and evolutionary algorithms

in order to solve difficult optimization problems. In contrast to classical evolutionary algorithms, in

EMAS selective pressure, which is one of the main mechanisms of evolution, is not centrally enforced,

but instead is an emergent property resulting from the interaction of independent agents. EMAS are

interesting in the context of this research, because the organization of the agents’ interactions has a

significant impact on the behavior of the algorithm, as described in Section 2.2.

The objectives of this research are as follows:

– To introduce a formalization of the concurrent and parallel properties of a agent-based computation

in the form of its concurrent execution model;

– to investigate how different execution models affect the properties of an agent-based computation,

both in terms of the behavior of the algorithm and of the efficiency of the computation;

– To define an execution model which makes it possible to precisely control the concurrent properties

of agents’ interactions, while being able to efficiently execute on modern many-core hardware.

As a result, computationally intensive multi-agent systems will be portable across different execution

models. This will allow to choose the one with the most interesting properties and performance for a

given use case. In particular, a highly concurrent and parallel execution model will be able to use modern

many-core hardware more efficiently and therefore allow larger-scale simulations.

1.3. Structure of the dissertation

The remainder of this dissertation is structured as follows: In section 2.1, I present the concept and a

simple implementation of Evolutionary Multi-Agent Systems as the main use case under study. In sec-

tion 2.2, I define the concurrent execution model of agent interaction on the base of an EMAS. Then,

in section 3.1, I introduce a design pattern which makes it possible to decouple the semantics of such

a agent-based computation from its execution model. In the remaining sections of chapter 3, I describe

several such execution models with different concurrency properties, along with the corresponding pub-

lications. Finally, I summarize the experimental results from those publications in chapter 4 and end with

concluding remarks in chapter 5.

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

20 1.3. Structure of the dissertation

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

2. Agent Interactions and Execution Models

This chapter describes Evolutionary Multi-Agent Systems as an example of a computationally in-

tensive agent-based computation. It also introduces the concept of the concurrent execution model of

agents’ interactions and its importance to the behavior of an agent-based computation.

2.1. Use case: Evolutionary Multi-Agent Systems

As an example of computationally intensive multi-agent systems, I focus my research on Evolu-

tionary Multi-Agent Systems (EMAS). They consist in combining multi-agent systems and evolutionary

algorithms in order to solve difficult optimization problems.

Evolutionary algorithms are universal metaheuristics capable of optimization. [14]. However, their

most classical designs, such as the Simple Genetic Algorithm [15] or Evolution Strategies [16]), greatly

simplify the underlying biological model of evolution. For the sake of simplicity, these algorithms ex-

clude many phenomena observed in real-world biological systems, such as dynamically changing envi-

ronmental conditions, co-evolution of species or genotype-phenotype mapping. More importantly, they

assume global knowledge during selection and generational synchronization during reproduction.

Evolutionary Multi-agent Systems (EMAS) [13] weaken those assumptions and to introduce more

sophisticated biological mechanisms. EMAS implementations prove more performant than classical

approaches when applied to difficult optimization problems, such as multi-criteria and multi-modal

optimization in continuous and discrete spaces [17, 18, 19, 20]. They can also solve some inverse

problems more efficiently because of a reduced number of fitness function evaluations [21, 22].

The core idea in EMAS is to evolve a population of agents. Every agent owns a genotype which

encodes a candidate solution to the optimization problem. The representation of this solution is problem

dependent, but will usually be a binary or real-valued vector.

This solution is evaluated to determine the fitness of the agent. The fitness is a number or a vector

of numbers in the case of multi-objective optimization. The optimization problem consists in finding

the candidate solution(s) with the best fitness. Depending on the problem, the best fitness may mean the

maximum or the minimal one across all candidate solutions (or the set of vectors such that no other ones

are strictly better in all dimensions, in the case of multi-objective optimization).

22 2.2. The execution model of agent interactions

The genotype also determines the observable properties and behavior of the agent. Agents repeatedly

interact among themselves, either directly or through their environment. There is no global knowledge

in a multi-agent system, and agents act in an autonomous way [23]. Therefore, in contrast to traditional

evolutionary algorithms, there is no centrally driven selective pressure. Instead, it is designed to emerge

from individual agents’ interactions in a decentralized manner [20].

Simple EMAS The following is a formalization of a simple EMAS. The main observable property of

an agent is its fitness, which is the evaluation of the candidate solution assigned to the agent.

Selective pressure is introduced by providing agents with a piece of discrete, non-renewable resource

called energy [20].

The behavior of the agent is driven by its energy levels. "Good" behavior is rewarded with additional

energy, "bad" behavior results in energy being taken. This feedback loop induces selective pressure in the

system in an emergent way. The semantics of "good" and "bad" behavior are implementation dependent.

In this dissertation, I assume a very simple strategy: Being good means having better fitness.

Therefore, the rules for managing energy are the following:

– Agents in the first generation are given some initial energy;

– Agents receive some energy from their parents when they are created;

– If the energy of an agent is below some threshold, it fights with another agent by comparing their

fitness value – the better agent takes energy from the worse one;

– Agents with sufficient energy can reproduce and yield new agents. The genotype of the children is

derived from their parents using classical genetic operators;

– When the energy of an agent drops to zero, it is removed from the system.

Figure 2.1 illustrates the idea of a fight between agents: agents compare fitness, and the loser gives

some of its energy to the winner. Figure 2.2 shows agent reproduction for agents. Sexual and asexual re-

production is performed by deriving the genotypes and fitness of the children from the ones of the parents

using traditional genetic operators and by transferring some energy from the parents to the children.

In contrast to traditional evolutionary algorithms, the number of agents may vary over time. The sys-

tem remains stable as long as the total energy remains constant. It is possible to adapt the size of the

population by externally changing the amount of energy in the system.

2.2. The execution model of agent interactions

What remains to be defined in the above algorithm is how we choose which agents fight or reproduce

with each other and when they do it. We can generalize this question as one about the concurrency of

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

2.2. The execution model of agent interactions 23

A
fitness: 10
energy: 20

B
fitness: 15
energy: 10

C
fitness: 5
energy: 10

D
fitness: 5
energy: 5

E
fitness: 10
energy: 15

transfer 5 from A to B

transfer 5 from C to D
or
transfer 5 from D to C

unchanged

A
fitness: 10
energy:15

B
fitness: 15
energy:15

C
fitness: 5
energy: 5

D
fitness: 5
energy:10

E
fitness: 10
energy: 15

Figure 2.1. An example of a fight strategy for agents. Agents are paired together, and

for each pair the agent with lower fitness transfer some of its energy to the one with

higher fitness. Draws are resolved at random, and if there is an odd number of agents

the last one is left unchanged.

A
fitness: 10
energy: 20

B
fitness: 15
energy: 12

C
fitness: 5
energy: 8

D
fitness: 5
energy: 5

E
fitness: 10
energy: 15

transfer 5 to children

transfer 5 to child

A
fitness: 10
energy:15

B
fitness: 15
energy: 7

C
fitness: 5
energy: 3

D
fitness: 5
energy: 0

E
fitness: 10
energy:10

transfer 5 to children

reproduce
sexually

reproduce
sexually

reproduce
asexually

AB
fitness:12
energy: 0

BA
fitness:16
energy: 0

CD
fitness: 3
energy: 0

DC
fitness: 8
energy: 0

EE
fitness:12
energy: 0

AB
fitness: 12
energy: 5

BA
fitness: 16
energy: 5

CD
fitness: 3
energy: 5

DC
fitness: 8
energy: 5

EE
fitness: 12
energy: 5

Figure 2.2. An example of a reproduction strategy. Agents are paired together, and

each pair reproduces sexually. If there is an odd number of agents, the last one may

reproduce asexually. Some problem dependent variation operators are used to generate

the children genotypes and the resulting fitness. Finally, parents share some of their

energy with their children.

interactions between agents, understood as the way agents perceive their interactions and the effects of

these. The manner in which interactions between agents are organized is referred to in this paper as their

concurrent execution model. Various concurrent execution models are possible and differ both in the way

information propagates in the system (i.e. causality as it is observed by the agents), as well as in their

technical characteristics, such as their amenability to parallelization and their scalability.

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

24 2.2. The execution model of agent interactions

EMAS are interesting in this context, because the organization of the agents’ interactions has a sig-

nificant impact on the behavior of the algorithm. For example, a computation where every agent always

interacts with a restricted set of neighbors will yield different results than a computation where every

pair of agents can meet – in the first case there is a higher chance that multiple, genetically diverse sub-

populations coexist, which is a phenomenon called allopatric speciation and can be useful for example

in multimodal optimization [24, 25].

Another aspect of the model of interactions is how they are related causally during the computation.

In other words, how concurrent are the interactions as perceived by the agents. For example, one strategy

for the Simple EMAS above would be to draw a random pair of agents on every step for them to compete

or reproduce. Another strategy would be to divide the whole population into pairs of agents, and after

the interactions of every pair are done, merge the resulting agents into a new population.

Depending on the choice, the evolutionary dynamics will be very different. In the first case, the results

of a single interaction are immediately visible to all agents in subsequent interactions. As a result, genes

will diffuse much quicker in the population. However, depending on how we choose the pair of agents,

some agents may have more opportunities to interact than others, which introduces additional, uncon-

trolled selective pressure. In the second case, the population changes in a more uniform way: in every

step every agent is allowed precisely one interaction. However, every agent must also wait for all other

agents to have finished their interaction to be able to move on to the next one, so the overall throughput

is reduced

It is difficult to predict in a general way which variant will be more efficient in solving a particular op-

timization problem. The next chapter introduces an approach to the design of multi-agent systems which

makes it possible to abstract from their execution model, in order to meaningfully compare alternatives.

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

3. Concurrent Execution Models

In this chapter, I propose a design for multi-agent systems which makes it possible to abstract the se-

mantics specific to a particular application from the underlying execution model, which enables mean-

ingfully comparing alternative ones. I subsequently introduce and analyze different execution models

with varying strengths and weaknesses. Each model is described in more depth in the corresponding

publication.

3.1. Abstracting the execution model

As described in Section 2.2, the order and organization of agents’ interactions can determine the

outcome of the algorithm. It also has a significant impact on the technical properties of the algorithm,

such as its potential for parallel execution and therefore its efficiency.

The simplest strategy to organize agents’ interactions is to shuffle the list of agents and then compute

the results of the meetings between subsequent pairs of agents. This standard approach is very simple to

implement but has major drawbacks:

– It requires to collect the whole population in a single operation, which is against the decentralized

nature of the algorithm.

– Agents who already finished their meeting must wait for others - there is a synchronization barrier

applied to the population as a whole.

– Agents are grouped together independently of the action they want to perform. This may be

wanted, but it requires to handle all possible combinations of agent behaviors.

Meeting Arenas In order to be able to meaningfully compare execution models for the same algorithm,

it is necessary to decouple the semantics of the multi-agent system, i.e. the decomposition into basic

constituents and the definition of their elementary behavior, from the underlying execution model.

To that purpose, I introduce an approach based on the Mediator design pattern [26]. I use the

metaphor of meeting arenas to convey its intuition. Based on their state, agents select choose an ac-

tion they are willing to perform, such as fighting, reproduction, etc. Then, agents conceptually move to

an arena where they can meet other agents willing to perform the same action.

26 3.1. Abstracting the execution model

In other words, meeting arenas allow to split a flow of incoming agents into groups of coherent

behavior. Each kind of agent behavior is represented by a separate arena. Depending on the type of the

behavior, agents are grouped together within arenas and interactions can proceed (see Figure 3.1).

Agents Arena Meetings

Figure 3.1. Meeting arenas group similar agents and coordinate meetings between

them.

Therefore, the semantics of the agent-based algorithm are fully determined by two functions. The

first one consists in agent behavior, which chooses the arena to meet on based on the state of an agent.

The second corresponds to the meeting operation which is computed at every arena for groups of agents.

This approach resembles the MapReduce programming model [27]. The agent behavior partitions the

agents population into meeting arenas just as in the mapping phase. The meeting logic transforms the

population, which is then trivially aggregated as in the reduce phase.

Agent Behavior Figure 3.2 shows an example of the behavior function for the Simple Emas described

in section 2.1. The behavior function chooses a behavior based on the current energy level of the agent.

If an agent has no energy, it dies. If it has enough energy it reproduces, otherwise it fights.

Death

is 0?

> N?

Reproduce Fight

A
fitness: 10
energy: 20

energy

yes

yes

no

no

Figure 3.2. The behavior function chooses the behavior of an agent based on its cur-

rent state. In this use case, if an agent has no energy, it dies. If it has enough energy it

reproduces, otherwise it fights.

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

3.1. Abstracting the execution model 27

Agent Meetings For a group of agents exhibiting the same behavior, the meeting function produces a

new group of agents (Figure 3.3). In particular, it can change the size of the group by removing agents

or adding new ones. For example, the death strategy simply outputs an empty list, which removes agents

from the system by not including them in the output. The specifics of each type of meeting is further

decomposed in meeting strategies, already described in Figures 2.2 and 2.1.

Death

Reproduce

Fight

A
fitness: 10
energy: 20

B
fitness: 15
energy: 10

C
fitness: 5
energy: 12

D
fitness: 9
energy: 5

E
fitness: 10
energy: 0

reproduction strategy

fight strategy

death strategy

AB
fitness:12
energy: 5

BA
fitness:16
energy: 5

A
fitness: 10
energy:15

B
fitness: 15
energy: 5

C
fitness: 5
energy: 7

D
fitness: 9
energy:10

Figure 3.3. For a given behavior and a group of agents exhibiting that behavior, the

meeting functions yields a new group of agents. The output group may contain new

agents (which are added to the system) or skip some input agents (which are then

removed from the system).

Meeting arenas also simplify the algorithm at the conceptual level. As agents only interact through

coherent behaviors, the amount of handlers needed to be implemented is linearly proportional to the

number of behaviors to handle. In contrast, if we allow agents with inconsistent behaviors to interact, we

need to consider the full Cartesian product of possible scenarios.

Additionally, as arenas are specialized for a particular type of behavior, they can choose the best

arity for the meeting operations. In particular, this strategy can be dynamic, e.g. a fighting arena may

usually make agents compete in tournaments of size 10, but choose to trigger a smaller tournament if

fewer agents have entered the arena within a time frame. Conversely, it may release the agents from the

arena and let them potentially choose another action to perform.

The fact that an agent has to settle on a single behavior in the behavior function may seem limiting at

first. For example, it is not possible to directly model the following strategy: "If there is someone around

with less energy than us, attack. Otherwise, if we have sufficient energy, self-reproduce". However, ex-

hibiting several different behaviors at the same time is, for most intents and purposes, the same as quickly

alternating between them. In other words, such an agent could repeatedly enter and leave the fighting and

self-reproduction arena in turns until the condition it seeks are fulfilled.

Another apparent limitation is that agents have to choose an arena not knowing who awaits them

there. In fact, this is in accordance with MAS principle of avoiding global knowledge. Knowledge can

only be acquired by interacting with other agents and the environment. Until it enters an arena and meets

other agents, an agent should not have any additional information. Of course, it is allowed to remember

past experiences and act accordingly.

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

28 3.2. Synchronous execution model

Execution Model When the semantics of the multi-agent system are described using the behavior and

meetings functions, all that is left to be defined is when and where these functions will be applied, as well

as how agents with similar behavior will be grouped together. The design and implementation decisions

about these aspects results in a particular execution model.

Meeting arenas allow to decouple the semantics of the algorithm from the execution model, which

allows us to consider different concurrent execution models and compare their performance for the same

algorithm.

3.2. Synchronous execution model

The simplest execution model is a typical, synchronous implementation of an agent-based compu-

tation, equivalent to a discrete event simulation (Figure 3.4). In every step, the population of agents

is shuffled and partitioned by the behavior function into groups corresponding to separate behaviors.

Every such group is then processed by the appropriate arena to yield an output group. These are merged

in order to form the new population. The step function can then be iterated a given number of times

on an initial population.

Note that even though the computation is synchronous, agents perceive the interactions within one

step as being simultaneous - the effects of the meetings in any given step will only be visible to the

population in the next step. We can also look at this property as a synchronization barrier - agents wait

for each other at the end of the step, before simultaneously synchronizing their knowledge about the

effects of all of their interactions. We can also identify discrete generations in the evolutionary algorithm.

A single agent can survive in multiple generations, but agents can only interact within such a generation.

From a technical point of view, every agent is progressing at the same pace, no matter the type of

interaction. All the interactions in a single step have to terminate before the whole population can move

on to the next interaction. This can be inefficient if some types of interactions take more time than others,

as it is the case in our Simple EMAS; reproductions take much more time than fights, as they need to

apply genetic operators to the derive the genotypes of the children and also compute their new fitness,

which are both a costly computation.

The following publication describes in more details the concept of meeting arenas introduced above

and applies it to several variants of the synchronous model.

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

3.2. Synchronous execution model 29

A
fitness: 10
energy: 20

B
fitness: 15
energy: 10

C
fitness: 5
energy: 12

D
fitness: 9
energy: 5

E
fitness: 10
energy: 6

Shuffle

F
fitness: 6
energy: 3

C
fitness: 5
energy: 12

E
fitness: 10
energy: 6

B
fitness: 15
energy: 10

A
fitness: 10
energy: 20

F
fitness: 6
energy: 3

D
fitness: 9
energy: 5

Compute behavior

G
fitness: 1
energy: 0

G
fitness: 1
energy: 0

C
fitness: 5
energy: 12

E
fitness: 10
energy: 6

B
fitness: 15
energy: 10

A
fitness: 10
energy: 20

F
fitness: 6
energy: 3

D
fitness: 9
energy: 5

G
fitness: 1
energy: 0

Reproduce Reproduce Reproduce FightFight FightDeath

Reproduce

Fight

Death

C
fitness: 5
energy: 12

E
fitness: 10
energy: 6

B
fitness: 15
energy: 10

A
fitness: 10
energy: 20

F
fitness: 6
energy: 3

G
fitness: 1
energy: 0

D
fitness: 9
energy: 5

Group by behavior

Apply strategy for each
pair in each behavior

Reproduce

Fight

Death

C
fitness: 5
energy: 7

E
fitness: 10
energy: 9

B
fitness: 15
energy: 5

A
fitness: 10
energy:15

F
fitness: 6
energy: 0

D
fitness: 9
energy: 5

CB
fitness: 8
energy: 5

BC
fitness:16
energy: 5

AA
fitness: 9
energy: 5

repeat until stop
condition is met

Merge results
from each group

Figure 3.4. In a synchronous execution model, the population is transformed step by

step by first grouping agents according to their behavior, then computing the meetings

function on each group of similar behavior, and finally combining the results.

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Future Generation Computer Systems 37 (2014) 390–400

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Computing agents for decision support systems
D. Krzywicki, Ł. Faber, A. Byrski ∗, M. Kisiel-Dorohinicki
AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland

h i g h l i g h t s

• Applicability of agent-oriented metaheuristics to decision support systems.
• Functional-programming based prototypes of agent-based computing systems.
• Experiments regarding scalability and performance of the implemented systems.

a r t i c l e i n f o

Article history:
Received 4 July 2013
Received in revised form
1 January 2014
Accepted 7 February 2014
Available online 17 February 2014

Keywords:
Decision support systems
Multi-agent systems
Scalability
Performance

a b s t r a c t

In decision support systems, it is essential to get a candidate solution fast, even if it means resorting
to an approximation. This constraint introduces a scalability requirement with regard to the kind of
heuristics which can be used in such systems. As execution time is bounded, these algorithms need to give
better results and scale up with additional computing resources instead of additional time. In this paper,
we show how multi-agent systems can fulfil these requirements. We recall as an example the concept
of Evolutionary Multi-Agent Systems, which combines evolutionary and agent computing paradigms.
We describe several possible implementations and present experimental results demonstrating how
additional resources improve the efficacy of such systems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The need to gather and analyse vast amounts of information
from numerous sources has grown in importance. Such data is of-
ten a basis for simulations and computations that support decision
making. It may be needed to run many computing tasks, in order
either to test different parameters in a model or to verify a statis-
tical hypothesis. An exhaustive search for optimal solutions to a
decision making problem is usually time-consuming and thus not
acceptable in real-time conditions. Instead, metaheuristics may
quickly provide good-enough options to be further considered in
the decision making process [1].

Examples of use cases with real-time constrains, where a quick
approximated solution may be better than an outdated optimal
one, may include:

• portfolio optimisation—a decision support system can apply
differentmodels to the availablemarket data and allow the user
to quickly react to arising trends [2];

∗ Corresponding author. Tel.: +48 126339406.
E-mail addresses: daniel.krzywicki@agh.edu.pl (D. Krzywicki),

faber@agh.edu.pl (Ł. Faber), olekb@agh.edu.pl (A. Byrski), doroh@agh.edu.pl
(M. Kisiel-Dorohinicki).

• crisis management—in crisis situations, such as fire outbreaks,
flooding or earthquakes, intensive simulations are required in
order to suggest possible evacuation routes or to assign res-
cue units to tasks. Geographical information usually needs
to be considered, yielding optimisation problems similar to
transportation-related ones [3];

• production planning—decision support systems can help in
scheduling work, rescheduling production plans in the case of
hardware failures, implementing just in time strategies or bal-
ancing conflicting goals (e.g. high system throughput vs low
machinery usage) [4].

Metaheuristics may still require a significant computational
power if the acceptable solution is to be found in a reasonable time.
For this purpose, large-scale infrastructure is usually used, such as
clusters, grids or clouds. To fully benefit from this computational
power, it is required to appropriately plan their development and
deployment, along with adequate tools and careful testing.

Because of its intrinsic decentralisation [5], the agent approach
is well suited to design scalable distributed models and has been
applied in various decision support systems. This approachmay be
summarised as the introduction of artificial intelligence techniques
into the system, transforming it from a passive tool into an active
collaborator in decision making. A number of such case-oriented
systems have been proposed and verified in practice [6,7].

http://dx.doi.org/10.1016/j.future.2014.02.002
0167-739X/© 2014 Elsevier B.V. All rights reserved.

30 3.2. Synchronous execution model

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

D. Krzywicki et al. / Future Generation Computer Systems 37 (2014) 390–400 391

Well-known general-purpose agent-based development tools
(such as JADE [8], RePast [9] or MadKit [10]) may not be the best
choice to implement such computational intensive simulations,
when throughput and scalability are more important than code
migrations or FIPA-compliant communication. Therefore, over the
last 10 years, we have been involved in the development of
several alternative platforms dedicated to large scale agent-based
simulations and computations [11–13].

In this work, we discuss the implementation aspects of using
computing agents in large-scale environments,with a focus onper-
formance. We compare different approaches to agent execution
and parallelism, based on the metaheuristic called evolutionary
multi-agent systems (EMAS), which is a hybrid of agent-oriented
and evolutionary-based computing [14].We introduce the concept
of meeting arenas, which allows to design more efficient and scal-
ablemulti-agent systems. Nevertheless, we show that explicit par-
allelism, when each agent is mapped onto a thread, can be much
less effective than a simple but optimised sequential implementa-
tion. Finally, we show that such agent-basedmetaheuristics can be
easily scaled with additional computational resources.

We start the paper with a discussion on the applicability of the
agent-oriented paradigm and metaheuristics in decision support
systems (Section 2), along with an EMAS example. In Section 3,
we introduce the most common approaches to parallelism in
agent-oriented computing and follow with a review of popular
agent platforms in Section 4. We describe in Section 5 how to
implement an evolutionarymulti-agent systemusing twodifferent
approaches—a synchronous and asynchronous one. Finally, we
conclude the paper by comparing the performance and scalability
of both approaches in Section 6.

2. Agent-based metaheuristics in decision support

Decision Support Systems (DSS) are information systems that
support different business or organisational activities involving
decision-making. They are especially useful in situations where
quickly changing, hard to specify in advance conditions are en-
countered. Referring to Power’s taxonomy for DSSs [15] this paper
focuses on Model-driven DSSs, which help the users in the anal-
ysis of the current situation by allowing to manipulate statistical,
simulational or optimisational models.

2.1. Metaheuristics for DSSs

The models used in DSSs are usually very complex and compu-
tationally hard, because the underlying problems are very difficult
as well. In such cases, one often turns to solutions based on so-
called heuristic methods, which provide ‘‘good-enough’’ solutions
without caring whether they may be proved to be correct or op-
timal [1]. These methods trade-off precision, quality and accuracy
in favour of smaller execution time and computational effort. They
are necessary to deal with difficult problems, and are referred to as
methods of the last resort [16].

A general definition of a heuristic algorithm, which does not
specify details such as a particular problem, search space or
operators, is called ametaheuristic. For example, a simple algorithm
such as greedy search may be defined without going into more
details as ‘‘an iterative, local improvements of a solution based on
random sampling’’ [17].

A simple but adequate classification of metaheuristics (cf. [18])
distinguishes two groups of techniques. Single-solution meta-
heuristics work on a single solution to a problem, seeking to im-
prove it. The examples are greedy search, tabu search or simulated
annealing. Population-basedmetaheuristics explicitly work with a

population of solutions and put them together in order to gener-
ate new solutions. The examples are evolutionary algorithms, im-
munological algorithms, particle swarm optimisation, ant colony
optimisation, memetic algorithms and other similar techniques.
They are usually inspired by nature and imitate different phenom-
ena observed in e.g., biology, sociology, culture or physics [19].

2.2. Agent approach

The key concept in multi-agent systems (MAS) consist in in-
telligent interactions, such as coordination, cooperation, or nego-
tiation. Therefore, multi-agent systems are ideal in representing
problems which can be solved using multiple methods by numer-
ous entities with various perspectives. One of the most important
features in a multi-agent system is the autonomy of the agents, as
they can fulfil the tasks assigned to them according to their own
strategy and the situation observed in their environment. In con-
sequence, agents are adaptable and proactive [5].

Combining the agent-oriented approachwith population-based
metaheuristics seems natural but has yet been the topic of little
work. The entities processed in the course of the computation
can often be considered autonomous and treated as agents in
a common environment. The operations involving many such
entities can be defined as interactions between these agents.

This change ofmodelling perspective allows to perceive parts of
the system on a higher abstraction level and build hybrid systems
which combine techniques from different metaheuristics. New
problems often arise, such as the lack of global knowledge or the
need for proper synchronisation of the agents’ actions. However,
interesting and useful effects also often result from the cooperation
of different mechanisms in one system [20].

In this paper,we focus on an example of such a hybrid approach,
in which agents are subject to an evolutionary process. Such
a combination yields interesting new features when compared
to classical evolutionary algorithms, such as a decentralised an
emergent selective pressure.

2.3. Evolutionary multi-agent systems

Agents in an evolutionarymulti-agent system (EMAS) represent
solutions to a given optimisation problem.

Inheritance is achieved through reproduction, with the possible
use of variation operators such as mutation and recombination,
like in classical evolutionary algorithms. Yet agents are to be
autonomous in their decisions andnoglobal knowledge is available
to them. Therefore, in contrast to classical evolutionary algorithms,
selection needs to be decentralised and involve peer-to-peer
interactions instead of being system-wide.

In order to do that, a solution based on the acquisition and
exchange of non-renewable resources has been proposed in [21].
The quality of the solution represented by the agent is expressed
by the amount of resources the agent owns. In general, these
resources should pass fromworse agents to better ones. Thismight
be realised through encounters between agents, which cause
better ones to end up with more resources and make them more
likely to reproduce. Worse agents lose resources which increases
the probability of their death. Because of such indirect dynamics
of reproduction and death, agents’ lifespans overlap and so do the
generations. Moreover, the size of the population is dynamic and
can be changed by varying the amount of available resources. A
detailed study of computingwith EMAS, in particular the influence
of its different parameters on the computing efficiency may be
found in [22].

Agents are grouped within environments which define the in-
formation and resources an agent has access to. Agents can interact

3.2. Synchronous execution model 31

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

392 D. Krzywicki et al. / Future Generation Computer Systems 37 (2014) 390–400

Fig. 1. An example of a simple evolutionary multi-agent system (EMAS). Agents
with higher fitness take energy from agents with lower fitness. High levels of
energy increase the probability of reproduction and reduce chances of death. In
consequence, the selection process is decentralised and selective pressure softens.
Multiple agent environments can be connected through agent migrations, like in
the classical island model.

with each other directly only within the same environment. How-
ever, they are able tomove to another environment, thus exchang-
ing information and resources all over the system [14] (see Fig. 1).

Environments are largely independent and communicate only
through agent migrations. Therefore, they can be easily treated
as basic units of distribution, as in the classical island model in
evolutionary algorithms. In addition to improving the performance
of the algorithm, it also increases the diversity of solutions in
the whole population (allopatric speciation). Other metaheuristics
can also be introduced, such as immunological selection [23] and
niching [24].

The principle of an evolutionary multi-agent system consist
in the explicit hybridisation of agent-oriented and evolutionary
computing. This contrasts with usual agent-oriented approaches,
which use the agent-paradigm to solve certain tasks by delegating
them to particular agents and combining the outcomes of their
work (see, e.g. [25]).

3. Interaction and execution models for agents

In agent-oriented computing systems, agent interactions are
one of the crucial aspects of their work. It is easy to predict
that parallelising them can significantly increase the throughput
of the system. However, this comes at the cost of increased
communication and synchronisation. Therefore, an important
issue is to choose the appropriate granularity of the entities in the
computation.

As agents are defined as autonomous and independent beings,
it seems natural to look for further concurrency within a single
environment. The question is where to put the boundaries of
concurrent execution, as it has consequences on both performance
and ease of programming. This section discusses themost common
models of execution and interaction in the existing agent software.

3.1. Heavyweight agents

In this model every agent is associated with a thread and com-
municates through message passing. Some agents may passively
wait for incoming messages and react to them. Other agents may
actively initiate interactions with other agents. It is difficult to
achieve a coordinated life cycle among such agents, since the

Fig. 2. Meeting arenas allow to group similar agents and coordinate meetings
between them.

corresponding threads may be arbitrary interleaved. Therefore,
some kind of synchronisation between agents still needs to be in-
troduced, usually in terms of a specific communication protocol.

In order to interact with each other, agents need to locate other
agentswilling to perform the same actions. For example, in an evo-
lutionary multi-agent system, an agent with enough resources to
reproduce needs to find another one which also has enough re-
sources. In order to do that, it could ask all other agents in the pop-
ulation. However, such a solution is obviously inefficient, because
of the intensity and redundancy of the required communication.

A better approach, introduced in this paper, is to use amediating
entity, which we call a meeting arena. Every time an agent wants
to perform an action, it chooses an appropriate arena to meet with
other similar agents. The arena is then able to partition itsmembers
in groups of some given arity and mediate the meeting itself (see
Fig. 2). Examples with pseudocode are given in Section 5.

The usage of meeting arenas should bring many benefits, not
only in terms of efficiency, as the algorithm itself can be structured
more clearly. Agents only need to be given a set of rules, in order
to choose an arena on the basis of their state. The actual protocol
of agents interactions can then be defined at the level of the
appropriate arena.

Assigning a thread to each agent may feel very natural. In
practice, however, the number of agents is often much higher
than the number of cores, especially in simulations. Performance
may then be seriously hindered by frequent context switches,
although this overhead may be reduced by sharing a pool of
threads among agents. However, thismodel still involves intensive
communication and costly processor cache synchronisation. In
consequence, the trade-off for such concurrency may be higher
than expected.

3.2. Lightweight agents

An opposite approach is to consider agents as parts of the
model, not parts of the implementation. As such, they are simply
represented as data structures and processed like in a discrete
event simulation.

The execution of an individual agent has to be divided into
smaller parts which can be interleaved. These parts, which we will
call actions, could for example consist in executing a single step or
querying a neighbour. Given its current state, every agent decides
which action to perform next. This action is submitted for later
execution to an executor service owning a pool of threads, like in
the Command Object design pattern.

The differencewith regard to classical discrete event simulation
is that actions are generated synchronously but can be executed
asynchronously. In other words, the state of an agent during the
execution of the action may be different from the time when the
action was created.

The performance of such a model will usually be higher than
in the previous one, more consistent memory access patterns re-
sulting in more efficient processor usage. Even though the explicit
parallelism is reduced, throughput can be improved, because fre-
quent agent interactions no longer need to be synchronised be-
tween threads.

32 3.2. Synchronous execution model

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

D. Krzywicki et al. / Future Generation Computer Systems 37 (2014) 390–400 393

Moreover, independent actions can still be executed in parallel
by the executor service. This is consistent with the meeting arena
concept described above, as actions on common subsets of agents
may be grouped together and considered as a single meeting.

4. Distributed and parallel multi-agent frameworks

This section provides an overview of existing multi-agent
frameworks. In our review, we focus on parallelisation and
distribution capabilities,with regard to the aspects discussed in the
previous section.

First, we briefly describe some selected tools which specialise
in metaheuristics. They are interesting examples of improving
metaheuristics with agent systems, but lack more general agent-
oriented features. However, all of them share the idea of an agent
being an executor of the algorithm and not a participant.

The platforms described in the consecutive sections provide
more sophisticated support for agent-based systems but are
not necessarily well suited to metaheuristic computations. Some
properties are shared by almost all of them, such as: the choice
of an object-oriented programming language (mostly Java) and
a representation of agents as objects with an internalised state.
Other characteristics include: models that are too heavy (e.g., JADE
due to FIPA compatibility), a large and complicated code base due
to the implementation of many communication, distribution and
component-oriented mechanisms in the platform instead of using
ready solutions (e.g., Jadex).

4.1. Metaheuristics frameworks

The four frameworks presented below are examples of intro-
ducing multi-agent systems to metaheuristic computations. They
are specialised to this purpose and lack well-defined distribution
facilities. We present them as alternative models but we do not
discuss their implementations in-depth.
MAGMA (Multi-agent architecture for metaheuristics): MAGMA [26]
is a multi-level (hierarchical) architecture of a multi-agent system.
Each level of agents has different objectives and represents a
different level of abstraction of the algorithm. For example, level
0 agents generate a sample solution and then level 1 agents
improve it by searching the neighbourhood of that solution. There
may be several agents that participate in an algorithm on each
level. Composing different metaheuristics is also possible with a
coordination provided by a higher level of the architecture (level
3). This way agents wrap selected functions of the algorithm and
not the whole algorithm itself (as it will be the case for further
platforms).
MAS-DGA (Multi-agent system for distributed genetic algorithms):
the attention of the authors in [27] is focused on approaches to the
question ofmigration. They propose theMAS-DGA framework that
comes from the concept of Distributed Genetic Algorithms, where
the population is divided into interacting subpopulations handled
by different genetic algorithms (GA). In the case of MAS-SGA, these
GA are encapsulated in agents. The authors suggest a possibility of
distribution on the agent level but they do not provide descriptions
of any specific examples nor implementations of this model.
AMF (Agent metaheuristic framework): the authors of AMF [28]
extend metaheuristics with an agent-oriented approach and an
organisational model based on roles and interactions. The RIO
meta-model described in the paper involves the three following
concepts: Role, Interaction and Organisation. Metaheuristics are
organisations, and agents play specific roles in these organisations.
Some of the defined roles are: the intensifier (performs a search in

a search space), the diversifier (identifies new promising regions in
the search space), the guide (structures the information from two
previous roles), etc.

MAS4EVO (Multi-agent system for evolutionary optimisation): in [25]
the authors propose a model and a framework (DAFO—Distributed
Agent Framework for Optimisation) that is a significant improve-
ment over the previous three. The framework is built on MadKit
(see Section 4.3). In this model, authors introduce three types of
agents: problem solving agents which optimise functions, fabric
agents which are responsible for initialising and configuring the
computation, and observing agents which generate output for the
end-user.

4.2. Jadex

Jadex1 is an agent-based programming framework that exploits
a novel approach to agents–components unification called ‘‘active
components’’ [29].

The concept of Active components unifies SCA (Service
Component Architecture) components with agents. This results in
components that are able to use, in addition to traditional required
and provided service interfaces, asynchronous messaging and that
can act autonomously. It has a tremendous impact on behaviours
of these components. They, for example, can refuse service call
executionwhen they cannot or do not want to process the request.

Agents: Jadex offers twoways to implement agents. It is possible to
use full-featured, BDI (belief–desire–intention) agents and simple,
so-called micro agents. Micro agents are usually just annotated
POJO (Plain Old Java Objects) classes. They follow three-phased
execution semantics: initialisation, execution and termination.
Additionally, an agent can schedule actions to be run later. As an
agent is also an active component, it may receive service calls and
incoming messages.

Distribution: distribution in Jadex is provided transparently to
the developer and it is implemented using a layered architec-
ture. Services, for example, may use remote asynchronous method
calls. Transparency is achieved by using proxy interfaces im-
plementation. Internally, remote calls are implemented using
asynchronous messaging between remote management system
components.Messages are encoded and transmitted through some
chosen stream. The encoding of messages is provided by codecs
which need to (un)marshall Java objects to binary or XML format
but which can also provide more sophisticated features: e.g., com-
pression or encryption. A stream can use different communication
transport: TCP, HTTP and others.

The second aspect of distribution is the peer awareness and
discovery. Jadex takes care of it automatically on all levels,
including service (i.e. interface) binding. When there is a look-up
for a required service, proxy components on a local node redirect
search requests to the remote management system to perform
remote look-ups of services.

Before that, remote platforms in the network need to be discov-
ered. For this purpose, Jadex provides a few different mechanisms:
e.g., broadcast discovery which sends UDP announcements about
a platform on a local network or registry discovery in which there
is one, central registry created for all platforms to announce them-
selves.

Other features of Jadex include, among other things, support for
interaction with external systems using web services and a GUI-
based control centre.

1 http://www.activecomponents.org.

3.2. Synchronous execution model 33

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

394 D. Krzywicki et al. / Future Generation Computer Systems 37 (2014) 390–400

4.3. MadKit

MadKit2 is a generic, customisable multi-agent platform based
on a specific organisational model [10]. Agents are divided
into groups and they may have particular roles in them. The
centralisation of the platform around the organisational concepts
is, in the view of the authors of the platform, a key element for
building heterogeneous systems.

The MadKit architecture is built on the agent-group-role (AGR)
model. This model is used to built organisations: an organisation
is described using terms of interacting groups and roles and is
separated from the concept of an agent.
Agents: a MadKit agent is an entity that can communicate and
which has several roles within one or more groups. Groups are
atomic structures aggregating agents and they can overlap. Roles
are tags for agent functions within groups. Agents request them
on their own and they may be granted or denied them. Communi-
cation between agents is achieved using asynchronous messaging.
Addressing of agents is done using their addresses or by their spe-
cific roles in one of their groups.
Architecture and distribution: the architecture of MadKit is devel-
oped around the AGR concept. Moreover, it follows some addi-
tional design decisions, the most interesting being: micro-kernel
architecture and agentified services.

The micro-kernel, responsible for basic platform management,
handles only most essential functions. The rest of the needed
services is handled by agents. The micro-kernel tasks are: control
of groups and roles, life-cycle management of agents, local
messaging. It also supports so-called ‘‘kernel hooks’’ which allow
the extension of its functionality by operations executed in the
publish–subscribe model. Two types of hooks are supported:
monitor and interceptor hooks. The former can be used by many
agents at the same time whilst the latter can be hold on by only
one agent and can be used to prevent the operation from successful
execution. Additionally, it is possible to execute actions on kernel
when an agent is a member of the system group.

The agentification of services describes a concept of turning
system services (e.g., distributed message passing, migration) into
agents. This makes the platform very extensible and flexible as
every component can be easily replaced: communication with
services is no different than with other agents.

MadKit has support for transparent distribution. Groups can
span across many platform nodes. It is provided by two roles in
the system group: communicator (routes messages to other nodes)
and synchroniser (keeps information about groups memberships
synchronised across all nodes).

MadKit provides also a graphical environment for visualising
simulations and controlling the platform.

4.4. µ2

µ2 (micro-squared)3 is a multi-agent platform centred around
the concept of a µ-agent (or micro-agent): a small-size agent,
that can be recursively constructed from other micro-agents
with decomposition and fine-grained separation of concerns in
mind [30]. µ2 is implemented in Java and in Clojure and available
under GPL 3.0 license.
Agents: micro-agents are autonomous, persistent, reactive and
proactive. They can play one or more roles which fulfil so-
called applicable intents. Intent is another name for an intention
or ‘‘abstract request specification’’. The platform provides some

2 http://www.madkit.net.
3 http://sourceforge.net/apps/mediawiki/micro-agents/.

organisational modelling approaches. An agent can be in a group
leader role. In such case, it controls many sub-agents, propagates
control messages and structures the society. Due to this approach
agents can construct themselves using sub-agents, and sub-agents
also can be group leaders. This is how decomposition can be
implemented in the platform. Other roles include: social roles that
allows agents to communicate asynchronously and passive roles
which support only synchronous communication. The latter role
was introduced to reduce possible performance penalties resulting
from asynchronous messaging.
Distribution: as it is mentioned in [30], µ2 is a platform that can be
run on Android devices. Micro-agents are encapsulated into An-
droid service and they are integrated into the rest of the system.
Communication between normal applications and agents is trans-
parent.

4.5. JADE

JADE4 is a mature (founded in 2000) Java framework for de-
veloping agent-based applications with a very strong relation-
ship with FIPA specifications [8]. Its architecture is focused on a
peer-to-peer communication with some centralised services. Two
software components are specified: agents (autonomous, using
asynchronousmessaging) and services (non-autonomous, running
on a single or multiple nodes).
Agents: JADE agents exist in containers (basically Java processes)
which can be distributed over the network. The way messages are
structured is compliantwith FIPAAgent Communication Language.
Distribution: the peer-to-peer nature of JADE made it possible
to create many reimplementations of nodes, e.g., for mobile
environments like Android [31]. Distribution is gained by splitting
a JADE container into a frontend and backend. The former runs on
amobile device and is rather lightweight, the latter usually runs on
a more powerful computer.

4.6. Repast suite family

Repast5 is an open-source, agent-based modelling and simu-
lation toolkit [9]. It has many versions for various programming
languages. The most interesting ones are the newest: Repast Sim-
phony (for Java) and Repast HPC (for C++). All of them use the
‘‘new BSD’’ license.

Repast Simphony is a complete rewrite of older Repast 3 with
a modular architecture, extendable via plugins. Individual compo-
nents (e.g., networking, logging) can be replaced easily. Plugins are
layered and separate layers can be replaced with similar easiness.
There is a separation between the model specification, execution,
data storage and visualisation. A core of the Repast Simphony con-
sists of components responsible for simulation functions (e.g., time
scheduling, space management, random number generators).
Agents: agents are modelled as objects, collections of agents – as
contexts, and the environment – as projections. A context is a set
of objects and may represent an agents’ population but does not
describe any structure or relationships between agents. The second
term – projection – was created to define structures of agents in
contexts. They may be, for example, network or grid structures.
Distribution: Repast does not offer distribution facilities similar to
other platforms. However, a user can prepare its own distributed
environment using external facilities, for example, Java RMI
(Remote Method Invocation), which is an object-oriented remote
procedure call mechanism.

4 http://jade.tilab.com/.
5 http://repast.sourceforge.net.

34 3.2. Synchronous execution model

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

D. Krzywicki et al. / Future Generation Computer Systems 37 (2014) 390–400 395

5. Implementation aspects

Evolutionary multi-agent systems and similar agent-based
computing systems need lightweight, reusable and easy-to-
parallelise solutions. In particular, the implicit agent-orientation
perceived at the implementation level of these platform does not
seem inevitable to us.We think that agent features should be a part
of the conceptual level, but do not need to be reflected in the im-
plementation in the case of computing systems.

Considering the execution models described in Section 3 and
their implementation in existing software tools for multi-agent
systems, we wanted to compare these two approaches to tell
what granularity is best suited for agent-based computing and
simulation. In order to abstract from the properties of these
frameworks not relevant to the problem, we implemented two
custom versions of an evolutionary multi-agent system.

In the first version, agents are asynchronous and can bemapped
to separate threads or share a thread pool. The second version is
synchronous and optimised for single-thread execution. Both ver-
sions are written in the Scala programming language, a relatively
new programming language for the Java Virtual Machine. Scala6 is
suited for both object-oriented and functional programming, sup-
ports parallel and asynchronous programming and is compatible
with Java code and existing libraries.

Both versions are based on the concept of meeting arenas
introduced in Section 3.1. Every agent is assigned with a solution
to the optimisation problem, its fitness and some ‘‘life energy’’ (a
single resource). The behaviour of the agents is the same in both
versions (see Listing 1). They differ in how agents join arenas and
how arenas execute meetings.

1 def chooseArena = energy match {
2 case 0 => deathArena
3 case e i f e > threshold
4 => reproductionArena
5 case e => f ightingArena
6 }

Listing 1: Agents choose an arena to join based on their current
resources, in this case energy.

In this evolutionary multi-agent system, we use the following
arenas:

• agents are removed from the system in the death arena
• agents compare their fitness in the fighting arena. Losers give

some of their energy to the winners
• new agents are created in the reproduction arena. Children solu-

tions are derived from their parents using variation operators.
Parents give some of their energy to their children.

5.1. Asynchronous EMAS

This version is similar to the approach in frameworks like
Jade, in which agents are the basic unit of concurrency. They are
independent entities which do not directly expose state and can
only query each other for information.

Agents and arenas have been implemented using the Akka7
actor library. They are represented by actors which execute
asynchronously and communicate through message passing. As
such, agents can be mapped to threads in a very flexible way.
Akka actors are handled by a component called the dispatcher.
The dispatcher allows each actor in turn to process one or more

6 http://www.scala-lang.org/.
7 http://akka.io/.

messages from its mailbox. It is also used to execute asynchronous
tasks.

The processing of a message or task can happen in any thread
owned by the dispatcher, which behaviour is fully configurable.
The dispatcher can use a single thread, a pool of threads or assign
a separate thread to each actor. Akka ensures happens-before
relationships between the processing of consecutivemessages and
preserves memory consistency.

After its previous meeting have ended, every agent chooses an
arena and join it by sending a JoinMeetingmessage. Every arena
has a fixed size and acts as a cyclic barrier: a meeting is triggered
as soon as the capacity of the arena have been reached (see Listing
2). Multiple meetings may be happening at the same time, but
every agent can only take part in one of them.When themeeting is
finished, a MeetingEnded message is sent asynchronously to its
participants so that they can choose a new arena to join.

1 def receive = {
2 case JoinMeeting =>
3 waitingRoom . add(sender)
4 i f (waitingRoom . i s F u l l ()) {
5 val members = waitingRoom . f lush ()
6 performMeeting (members) andThen {
7 members foreach {
8 member => member t e l l MeetingEnded
9 }

10 }
11 }
12 }

Listing 2: Asynchronous arenas act as a cyclic barrier and trigger an
asynchronous meeting as soon as they are full.

An additional mechanism, omitted above for clarity, triggers a
meeting after some inactivity timeout. This may be beneficial for
the algorithm (e.g., reproductionwithmutation only) or help avoid
deadlocks (when the number of agents in the environment is lower
than the capacity of the arena).

Listing 3 shows an example of a meeting in the fighting arena.
As the arena has no direct access to agents’ state it needs to
query them with the use of messages. A Scala feature known
as futures and for comprehension allows to implement asyn-
chronous and non-blocking meetings. The askForFitness and
getEnergyFrom functions return a future value which will be
completed only when all the members reply to messages. For
comprehension composes these futures into a new one which is
returned from the performMeeting function, allowing the in-
stallation of a completion hook (Listing 2, lines 6–9). The important
thing is that the performMeeting function can return before the
meeting has actually ended, so that another meeting may be trig-
gered in the arena.

1 def performMeeting (members) = for (
2 f i tnes ses <− askForFitness (members) ;
3 val winner = zip (members , f i tnes ses)
4 .maxBy { (m, f) => f }
5 .map { (m, f) => m }
6 val losers = members − winner ;
7 energies <− getEnergyFrom (losers)
8) yield winner t e l l ReceiveEnergy (energies . sum)

Listing 3: Non-blocking asynchronous fight using Scala futures and
for comprehension.

5.2. Synchronous EMAS

In this version, agents are considered parts of the model rather
than the implementation, like in Netlogo. As such, they are not
represented as individual entities but as data structures.

3.2. Synchronous execution model 35

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

396 D. Krzywicki et al. / Future Generation Computer Systems 37 (2014) 390–400

Fig. 3. The Rastrigin function in two dimensions.

Populations are collections of agents, processed step by step
by arenas to yield new collections (see Listing 4). Agents are split
into arenas (lines 2–4) and grouped accordingly to the arity of
each arena (line 7). Finally, groups are processed by arenas and
the agents resulting from each meeting are combined into a new
population (lines 5–10).

1 def step (population) = {
2 val agentsInArenas = population groupBy { agent =>
3 agent . chooseArena
4 }
5 val newPopulation = agentsInArenas flatMap {
6 (arena , agents) =>
7 agents grouped (arena . s ize) flatMap {
8 members => arena . performMeeting (members)
9 }

10 }
11 return newPopulation shuff led

Listing 4: Agents are split between arenas, grouped and processed.
These action repeatedly transform the population.

The performMeeting method of each arena should in this
case return a collection of agents representing the result of a
meeting. These collections are merged into the new population.
The Listing 5 shows the implementations of a synchronous fighting
arena, which is similar but simpler than in the asynchronous
version, as arenas can now have direct and synchronous access to
the state of agents.

1 def performMeeting (members) = {
2 val winner = members maxBy {
3 agent => agent . f i t ne s s
4 }
5 val losers = members − winner
6 val energies = getEnergyFrom (losers)
7 winner . energy += energies . sum
8 return members
9 }

Listing 5: A synchronous fighting arena transforms its members by
transferring energy from losers to winners.

The step function from Listing 4 could be executed in a simple
loop. However, we used an Akka actor which repeatedly sends a
Step message to itself, in order to minimise the performance im-
pact of the Akka framework itself when comparing both versions.

It should be added that the structure of the synchronous version
is similar to the MapReduce pattern and could be parallelised in

Table 1
EMAS parameters.

Initial-size 50
Initial-energy 10
Reproduction-threshold 10
Reproduction-transfer 5
Fight-transfer 10
Fight-arena-size 2
Migration-probability 0.001
Problem-size 100
Mutation-rate 0.1
Mutation-range 0.05
Mutation-probability 0.75
Recombination-probability 0.3

a similar way. While this is a topic of the current research, we
decided to stick to a possibly simple version in this work.

6. Experimental results

We carried out a series of experiments to measure the
performance and scalability of the implementations described in
the previous section. We applied the evolutionary multi-agent
system to the optimisation task of finding the global minimum of
the Rastrigin benchmark function (Eq. (1)), a highly multimodal
function with many local optima and one global minimum equal
0 at x̄ = 0 (Fig. 3). We used a problem size (a dimension of the
function) equal to 100.

f (x) = 10n +

n
i=1

(x2i − 10 cos(2πxi)). (1)

The parameters used in our experiments are listed in Table 1.
The environment was initialised with initial-size agents, each

given initial-energy. Agents were fighting on an arena of fight-
arena-size capacity, transferring fight-transfer energy from a loser
to a winner. As soon as an agent’s energy exceeded reproduction-
threshold, it entered a reproduction arena of size 2. Each pair of
agents in the reproduction arena reproduced using a set of genetic
operators described below, creating 2 new agents, each one given
reproduction-transfer energy from one of their parents.

In the second stage of our experiments, at each step every
agent had a migration-probability of migrating to some other
environment. The target environment was chosen at random and
including the original one.

In order to create new solutions to be assigned to newborn
agents, the following genetic operators were used. Solutions were
encoded as real-valued vectors. At each reproduction, crossover

36 3.2. Synchronous execution model

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

D. Krzywicki et al. / Future Generation Computer Systems 37 (2014) 390–400 397

Table 2
Final best fitness found in each of the models with a given number of cores. The
asynchronous models were run 60 min, the synchronous one was run 10 min. The
results are averaged over 30 runs.

Cores
1 2 4 8 12

Own 22.1500 19.4800 12.7577 9.2573 3.6087
Pool 18.0173 17.6303 11.1574 5.4219 3.8016
Single 15.2845 19.2584 6.3323 8.1770 3.4879

Sync 0.0371 0.0398 0.0321 0.0186 0.0257

Table 3
Total number of fitness evaluations in each of the models with a given number of
cores. The asynchronous models were run 60 min, the synchronous one was run
10 min. The results are averaged over 30 runs.

Cores
1 2 4 8 12

Own 1.0407 1.5252 1.6836 2.0900 2.9918

×107Pool 1.4270 1.7994 2.0061 2.6123 2.8876
Single 1.7423 1.4949 2.2076 2.2561 2.9611
Sync 3.3296 3.1524 3.7204 5.6854 4.6629

andmutation happened with respectively recombination-probabil-
ity and mutation-probability. We used random average crossover,
which consists in picking a random point in the hypercube defined
by the parents genotypes. Every feature in the solution vector was
mutated with probability mutation-rate. We used Gaussian muta-
tion withmutation-range standard deviation.

6.1. Performance testing

In our performance testing, we distinguished four experimental
scenarios. All of them share the same set of parameters listed above
and have been run on Pl-Grid8 infrastructure. We used nodes with
an Intel Xeon X5650 2,66 GHz processor, with 1 GB of memory and
a variable number of active cores (up to 12).

The first three scenarios correspond to the asynchronous
implementation with an Akka dispatcher configured with respec-
tively own-thread, thread-pool and single-thread policy (see Sec-
tion 5.1). The fourth scenario is the synchronous implementation
(Section 5.2).

Each scenario was repeated 30 times with different random
generator seed values. The asynchronousmodels have been run for
60 min each, while the synchronous one only for 10 min.

We gathered two metrics: (a) the fitness of the best solution
found so far at any given time, (b) the number of fitness function
evaluations at any given time. The former metric shows the
efficiency of the evolutionary algorithm itself and is also dependent
on i.e. the parameters of the evolutionary operators. The latter
reflects the number of agent meetings and only depends on the
execution model and threading strategy. Of course, the dynamics
of the underlying multi-agent system have an impact on the
efficiency of the evolutionary algorithm.

The results in Tables 2 and 3 indicate that:

• there was no statistically significant difference in the perfor-
mance of the asynchronous version using different thread poli-
cies (as verified by a two-sample Kolmogorov–Smirnov test
with p = 0.5);

• the asynchronous versions greatly improved when given more
cores . . .

• . . . but were dramaticallyworse than the synchronous version.

8 http://www.plgrid.pl/en.

Fig. 4. Average best fitness found in each of the models after a given amount of
time (for 12 cores used). Top—asynchronous models, bottom—synchronous model.

This difference in efficiency did not come from a flaw in
the evolutionary algorithm itself, but rather from the underly-
ing implementation model. The best asynchronous version only
performed about 8× 103 fitness evaluations per second, while the
synchronous version did more than 7 × 104—nearly an order of
magnitude faster. This efficiency gap can clearly be seen in Figs. 4
and 5.

Profiling data suggest that the asynchronous implementation
was not idle or blocking on I/O, but rather very busy managing
threads and passing messages between actors.

Fig. 6 shows the empirical distribution functions of the final
fitness achieved in separate runs of each model. In many cases,
the asynchronous version did converge to acceptable solutions
(though given much more time). However, in many runs, they
clearly needed more time. In contrast, all the runs of the
synchronous version converged to the attraction basin of the global
optimum (which corresponds in the case of the Rastrigin function
to a fitness value lower than 1). It took an average of 132.13 s
(±23.82 s), the empirical cumulative distribution is shown in
Fig. 7.

6.2. Scalability testing

Having determined that the synchronous model is more
efficient, we went on to test the scalability of the algorithm when
new resources were added. We modified the implementation to

3.2. Synchronous execution model 37

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

398 D. Krzywicki et al. / Future Generation Computer Systems 37 (2014) 390–400

Fig. 5. Amount of fitness evaluations performed in each of the models after a
given amount of time (for 12 cores used). Top—asynchronous models, bottom—
synchronous model.

simultaneously start a synchronous EMAS environment on many
nodes in a cluster. The environments discovered each other in the
cluster and connected, enabling the migration of agents between
them.

We considered several scenarios with an increasing number of
nodes. Each scenario was run for 10 min and repeated 30 times.

Fig. 8 shows the fitness of best solution found after a given time,
averaged over all environments in a given scenario and all runs of
the scenario. We can see that even adding a second node to the
computation leads to significantly better results. Moreover, adding
more nodes increases the convergence rate.

These results show that it is efficient to decomposemulti-agent
systems into distributed environments, like in the classical island
model of evolutionary algorithms. However, the decentralised se-
mantics of agent interactionmay lead tomore intelligentmigration
strategies, for examplewhere agent populations automatically bal-
ance the load in the cluster.

7. Conclusion

Metaheuristics can be valuable in decision support systems
with time constraints. We discussed in this paper how the agent
approach can be applied to these systems in order to build efficient
and scalable software. We described the concept of evolutionary
multi-agent systems, an example of a metaheuristic combining
agent-based and evolutionary techniques.

Fig. 6. Empirical cumulative distribution functions of the final fitness values found
at the end of the computations (for 12 cores used). Top—asynchronous models,
bottom—synchronous model.

Fig. 7. Empirical cumulative distribution function of the time required to find the
global solution in the synchronous model (for 12 cores used).

The main goal of our work was to investigate the existing
methods of building agent software and suggest new directions
of development. In particular, we wanted to see if the dominant
approach, which considers every agent as a unit of concurrency, is
really efficient in computational intensive simulations.

38 3.2. Synchronous execution model

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

D. Krzywicki et al. / Future Generation Computer Systems 37 (2014) 390–400 399

Fig. 8. Best fitness reached within a given time when using different amounts of
nodes (parallel environments).

To that purpose, we developed two alternate implementations
of an evolutionary multi-agent system which generalise the
trends in the existing agent software. We introduced the idea
of meeting arenas, an agent-based realisation of the Mediator
design pattern which allow to efficiently structure multi-agent
systems.We applied this concept to two versions of the algorithm:
an asynchronous one, where every agent is a fully independent
entity, and a synchronous one which treats agents as simple data
structures.

Our experiments revealed that an asynchronous implementa-
tion, whichmay feel more the agent way, is nearly an order of mag-
nitude less efficient than a synchronous one based on the same
design. Several prototypes in other technologies supported these
results. Further experiments on the synchronous implementation
demonstrated that it can easily be scaled in a distributed setting,
so that the efficiency of the algorithm increases when new nodes
are added to the computation.

Therefore, we showed that the prevailing approach in existing
agent platforms is not best suited in this particular class of appli-
cations. Instead, there is still room for improvement in the field of
agent software dedicated to intensive simulations and computa-
tions. To that purpose, the concept ofmeeting arenas introduced in
this paper allow to retain the expressive power of existing agent-
based algorithms but can lead tomuchmore efficient synchronous
implementations.

In the nearest future, we want to see if concepts used in
the functional programming paradigm could be more suited or
more efficient in multi-agent software than the dominant object-
oriented approach. Future work could also tell what kind of paral-
lelism could be efficiently introduced in populations of agents. In
particular, it would also be interesting to see how the Map/Reduce
paradigm could be used to develop efficient massive multi-agent
systems with hundreds of thousands of agents.

Acknowledgements

The research presented in the paper was partially supported
by the European Commission FP7 through the project ParaPhrase:
Parallel Patterns for Adaptive Heterogeneous Multicore Systems,
under contract no.: 288570 (http://paraphrase-ict.eu).

The research presented in the paper was conducted using PL-
Grid Infrastructure (http://www.plgrid.pl/en).

The research presented in the paper was partially supported by
the Polish Ministry of Science and Higher Education under AGH
University of Science and Technology Grant 11.11.230.015.

References

[1] Z. Michalewicz, D. Fogel, How to Solve It: Modern Heuristics, Springer, 2004.
[2] R. Dreżewski, J. Sepielak, L. Siwik, Classical and agent-based evolutionary algo-

rithms for investment strategies generation, in: A. Brabazon, M. O’Neill (Eds.),
Natural Computing in Computational Finance, in: Studies in Computational
Intelligence, vol. 185, Springer-Verlag, 2009, pp. 181–205.

[3] J. Koźlak, G. Dobrowolski, M. Kisiel-Dorohinicki, E. Nawarecki, Anti-crisis
management of city traffic using agent-based approach, J. UCS 14 (2008).

[4] A. Ławrynowicz, A survey of evolutionary algorithms for production and
logistics optimization, Res. Logist. Prod. 1 (2011).

[5] M. Wooldridge, N. Jennings, Intelligent agents, in: LNAI, vol. 890, Springer
Verlag, 1995.

[6] Y. Luo, K. Liu, D. Davis, Amulti-agent decision support system for stock trading,
IEEE Netw. (2002) 20–27.

[7] S. Ossowski, A. Fernandez, J.M. Serrano, J. Perez-de-la Cruz, M. Belmonte,
J. Hernandez, A. Garcia-Serrano, J. Maseda, Designing multiagent decision
support system—the case of transportation management, in: Proc. of AAMAS,
ACM Press, 2004, pp. 1468–1469.

[8] F. Bellifemine, A. Poggi, G. Rimassa, JADE: a FIPA2000 compliant agent devel-
opment environment, in: Proceedings of the Fifth International Conference on
Autonomous Agents, ACM, 2001, pp. 216–217.

[9] M.J. North, N.T. Collier, J. Ozik, E.R. Tatara, C.M. Macal, M. Bragen, P. Sydelko,
Complex adaptive systems modeling with Repast Simphony, Complex Adapt.
Syst. Model. 1 (2013) 3.

[10] O. Gutknecht, J. Ferber, TheMadKit agent platform architecture, in: T.Wagner,
O. Rana (Eds.), Infrastructure for Agents, Multi-Agent Systems, and Scalable
Multi-Agent Systems, 2001.

[11] K. Piętak, A.Woś, A. Byrski,M. Kisiel-Dorohinicki, Functional integrity ofmulti-
agent computational system supported by component-based implementation,
in: Proceedings of the 4th International Conference on Industrial Applications
of Holonic and Multi-Agent Systems, 2009.

[12] A. Byrski, R. Dębski, M. Kisiel-Dorohinicki, Agent-based computing in an
augmented cloud environment, Comput. Syst. Sci. Eng. 27 (2012).

[13] Ł Faber, K. Pietak, A. Byrski, M. Kisiel-Dorohinicki, Agent-based simulation in
AgE framework, in: A. Byrski, Z. Oplatkova, M. Carvalho, M. Kisiel-Dorohinicki
(Eds.), Advances in Intelligent Modelling and Simulation, in: Studies in
Computational Intelligence, vol. 416, Springer, Berlin, Heidelberg, 2012,
pp. 55–83.

[14] A. Byrski, R. Dreżewski, L. Siwik, M. Kisiel-Dorohinicki, Evolutionary multi-
agent systems, Knowl. Eng. Rev. 30 (2015) in press.

[15] D. Power, Decision Support Systems: Concepts and Resources for Managers,
Quorum Books, 2002.

[16] Z. Michalewicz, Ubiquity symposium: evolutionary computation and the
processes of life: the emperor is naked: evolutionary algorithms for real-world
applications, Ubiquity 2012 (2012) 3:1–3:13.

[17] F. Glover, G.A. Kochenberger, Handbook of Metaheuristics, Springer, 2003.
[18] J. Dréo, A. Pétrowski, P. Siarry, E. Taillard, A. Chatterjee,Metaheuristics forHard

Optimization: Methods and Case Studies, Springer, 2005.
[19] E.-G. Talbi, Metaheuristics: From Design to Implementation, Wiley, 2009.
[20] M. Kisiel-Dorohinicki, G. Dobrowolski, E. Nawarecki, Agent populations

as computational intelligence, in: L. Rutkowski, J. Kacprzyk (Eds.), Neural
Networks and Soft Computing, Physica Verlag, 2002, pp. 608–614.

[21] K. Cetnarowicz, M. Kisiel-Dorohinicki, E. Nawarecki, The application of
evolution process in multi-agent world (MAW) to the prediction system,
in: M. Tokoro (Ed.), Proc. of the 2nd Int. Conf. on Multi-Agent Systems,
ICMAS’96, AAAI Press, 1996.

[22] A. Byrski, Tuning of agent-based computing, Comput. Sci. 14 (3) (2013).
[23] A. Byrski, M. Kisiel-Dorohinicki, Immunological selection mechanism in

agent-based evolutionary computation, in: Proc. of IIS: IIPWM’05 Confer-
ence: Gdansk, Poland, Advances in Soft Computing, Springer Verlag, 2005,
pp. 411–415.

[24] D. Krzywicki, Niching in evolutionarymulti-agent systems, Comput. Sci. 14 (1)
(2013).

[25] G. Danoy, P. Bouvry, O. Boissier, A multi-agent organizational framework for
coevolutionary optimization, in: Transactions on Petri Nets and Other Models
of Concurrency IV, Springer, 2010, pp. 199–224.

[26] M. Milano, A. Roli, Magma: a multiagent architecture for metaheuristics, IEEE
Trans. Syst. Man Cybern. Part B, Cybern. 34 (2004) 925–941.

[27] E. Noda, A.L. Coelho, I.L. Ricarte, A. Yamakami, A.A. Freitas, Devising adaptive
migration policies for cooperative distributed genetic algorithms, in: 2002
IEEE International Conference on Systems, Man and Cybernetics, Vol. 6, IEEE,
2002, pp. 6–11.

[28] D. Meignan, J.-C. Créput, A. Koukam, An organizational view ofmetaheuristics,
in: First International Workshop on Optimisation in Multi-Agent Systems,
AAMAS, Vol. 8, 2008, pp. 77–85.

[29] L. Braubach, A. Pokahr, Developing distributed systems with active compo-
nents and jadex, Scalable Comput. Pract. Exp. 13 (2012) 100–119.

[30] C. Frantz, M. Nowostawski, M. Purvis, Dynamic ad hoc coordination of
distributed tasks using micro-agents, in: Agents in Principle, Agents in
Practice, 2011, pp. 275–286.

[31] M. Ughetti, T. Trucco, D. Gotta, Development of agent-based, peer-to-
peer mobile applications on ANDROID with JADE, in: 2008 The Second
International Conference on Mobile Ubiquitous Computing, Systems, Services
and Technologies, 2008, pp. 287–294.

3.2. Synchronous execution model 39

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

400 D. Krzywicki et al. / Future Generation Computer Systems 37 (2014) 390–400

D. Krzywicki obtained his M.Sc. in 2012 at AGHUniversity
of Science and Technology in Cracow and is currently
a Ph.D. student at the Department of Computer Science
of AGH-UST. His research interests include agent-based
computations, functional programming and distributed
systems.

Ł. Faber obtained his M.Sc. in 2012 at AGH University of
Science and Technology in Cracow and is currently a Ph.D.
student at the Department of Computer Science of AGH-
UST. His research interests include agent-based modelling
and distributed systems.

A. Byrski obtained his Ph.D. in 2007 and D.Sc. (habilita-
tion) in 2013 at AGH University of Science and Technology
in Cracow. He works as an assistant professor at the De-
partment of Computer Science of AGH-UST. His research
focuses on multi-agent systems, biologically-inspired
computing and other soft computing methods.

M. Kisiel-Dorohinicki obtained his Ph.D. in 2001 and
D.Sc. (habilitation) in 2013 at AGH University of Science
and Technology in Cracow. He works as an assistant
professor at the Department of Computer Science of AGH-
UST. His research focuses on intelligent software systems,
particularly using agent technology and evolutionary
algorithms, but also other soft computing techniques.

40 3.2. Synchronous execution model

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

3.3. Execution model based on actors 41

3.3. Execution model based on actors

The second execution model I examined was based on the actor Model [28] of concurrency. In sim-

plified terms, an actor can be understood as an addressable process which requires few resources, can

execute independently and potentially in parallel with other actors. Each actor may have mutable state,

but can only affect other actors by sending them messages.

In this execution model, every agent, every arena, and every interaction is represented by a separate

actor (Figure 3.5). Within their actors, agents compute the behavior function to determine their next

behavior and send a summary of their state to the arena actor corresponding to the chosen behavior.

Death
Arena

Fight
Arena

Reproduction
Arena

A

A

A

A

A

A

A

joins

terminates

joins

joins
joins

joins

updates

updates
updates

spawns

spawns

Figure 3.5. In the execution model based on actors, every agent and every arena is

mapped into an actor and communicate through message passing. Agents repeatedly

compute the behavior function to decide which arena to join. The meeting function

is computed within arenas when enough agents have joined. As a result of the meet-

ing, agents (and the underlying actor) can be spawned, updated or terminated. The

supervision hierarchy of the actor is not represented in this figure.

The arena actors receive incoming agents. When the capacity of the arena is reached, or when a

timeout happens, a meeting is triggered. As a result, depending on the type of behavior, new agents may

be born, existing agents may be modified or die. As necessary, the meeting arena will spawn or terminate

actors, then distribute new agents state across those actors for the behavior function to be computed

again.

This execution model is highly concurrent, as the computation of the behavior and meeting functions

in different agents and arenas can happen in any order. There is only a partial causal order in the system,

as defined by the exchange of messages [29]. This execution model is also highly parallel and can easily

be distributed, just as the underlying actor model. However, if the dispatching of actors is being done

in parallel, the computation becomes non-deterministic, and the concurrent properties of the algorithm

cannot be easily controlled for.

For the sake of simplicity, the supervision hierarchy of the actors is not detailed on Fig 3.5. In prac-

tice, there is a parent actor responsible for supervising a set of actors and arenas, and arenas delegate to

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

42 3.3. Execution model based on actors

their parent for the spawning of new actors. This parent actor makes it very simple to model multiple

agent environments, as in the island model. Every environment is defined by a disjoint set of arenas across

which agents can interact. For an agent, migrating to a different environment only means to change its

supervisor and the set of arenas which it will join.

The following to publications describe implementations of the actor-based model in different lan-

guages (Scala and Erlang). They show that the general properties of the model as observed during exper-

imental validation are consistent in both cases, despite the differences in the underlying technologies.

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Journal of Computational Science 11 (2015) 153–162

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

Massively concurrent agent-based evolutionary computing

D. Krzywicki, W. Turek, A. Byrski ∗, M. Kisiel-Dorohinicki
AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Poland

a r t i c l e i n f o

Article history:
Received 15 October 2014
Received in revised form 29 June 2015
Accepted 20 July 2015
Available online 29 July 2015

Keywords:
Multi-agent systems
Evolutionary computing
Functional programming

a b s t r a c t

The fusion of the multi-agent paradigm with evolutionary computation yielded promising results in
many optimization problems. Evolutionary multi-agent systems (EMAS) are more similar to biological
evolution than classical evolutionary algorithms. However, technological limitations prevented the use
of fully asynchronous agents in previous EMAS implementations. In this paper we present a new algo-
rithm for agent-based evolutionary computations. The individuals are represented as fully autonomous
and asynchronous agents. An efficient implementation of this algorithm was possible through the use of
modern technologies based on functional languages (namely Erlang and Scala), which natively support
lightweight processes and asynchronous communication. Our experiments show that such an asyn-
chronous approach is both faster and more efficient in solving common optimization problems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Biological systems are asynchronous by nature. This fact is not
always considered in biologically inspired computing methods (e.g.
metaheuristics, such as evolutionary algorithms [24]). These sys-
tems usually use notions such as “discrete” generations, loosing
such concepts as parallel ontogenesis, or lack of global control. Nev-
ertheless, such computing systems have proven to be effective in
different optimization problems. Moreover, some of them can be
mathematically proven to work in terms of asymptotic stochastic
guarantee of success (cf. works of Vose on simple genetic algorithm
[32]).

Agent-oriented systems should also be asynchronous by nature,
as they are inspired by social or biological systems. Over the
last decade, our group has worked on the design and develop-
ment of decentralized evolutionary computations [2] in the form
of evolutionary multi-agent systems [9]. EMAS is a hybrid meta-
heuristic which combines multi-agent systems with evolutionary
algorithms. A dedicated mathematical formalism, based on Markov
chains (similar to Vose’s approach) was constructed and analysed
[4], showing that EMAS may be also treated as a general-purpose
optimization system. Besides that, a number of other formalisms
along with dedicated frameworks implemented in different pro-
gramming languages (like Java, Scala or Python) were developed
(see, e.g. [6,29,7]).

∗ Corresponding author.
E-mail addresses: daniel.krzywicki@agh.edu.pl (D. Krzywicki),

wojciech.turek@agh.edu.pl (W. Turek), olekb@agh.edu.pl (A. Byrski),
doroh@agh.edu.pl (M. Kisiel-Dorohinicki).

The concept of hybridization of agent-based systems with
evolutionary techniques can be implemented in different ways,
especially with regard to asynchronicity and concurrency, as well as
distribution and parallelism. There are a number of popular agent-
oriented frameworks which offer asynchronously communicating
agents (such as Jadex [27], JADE [1] or MadKit [15]). However, they
all share similar properties, such as heavyweight agents, at least
partial FIPA-compliancy (JADE) or a BDI model (Jadex). It is also
common for each agent to be executed as a separate thread (e.g. in
JADE). These traits are indeed appropriate to model flexible, coarse-
grained, open systems. However, evidence suggest they are not best
suited for closed systems with homogeneous agents nor for fine-
grained concurrency with large numbers of lightweight agents,
which are both common in biologically inspired population-based
computing systems [31].

Therefore, dedicated tools for the above-mentioned class of
agent-based systems have been constructed over the last 15 years.
One of the successful implementations is the AgE platform,1 which
supports phase-model and hybrid concurrency features (parts of
the system are concurrent and parts are implemented as sequential
processes). The AgE platform also has other advantages, such as sig-
nificant support for reuse and flexible configuration management.
Dedicated AgE implementations were constructed using Java, NET
and Python technologies.

However, the renewed interest in functional programming and
languages such as Erlang and Scala brought new possibilities
in terms of concurrent programming support. In a recent paper

1 http://age.agh.edu.pl.

http://dx.doi.org/10.1016/j.jocs.2015.07.003
1877-7503/© 2015 Elsevier B.V. All rights reserved.

3.3. Execution model based on actors 43

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

154 D. Krzywicki et al. / Journal of Computational Science 11 (2015) 153–162

[21], we proposed a promising new approach to these kinds of
agent-based algorithms. We used Erlang lightweight processes to
implement a fined grained multi-agent system and bring more
asynchronicity into usually synchronously implemented agent
actions and interactions.

In this paper, we present a significant progress over the
research presented in [21], by extending our experiments to
a Scala-based implementation (in addition to the Erlang-based
one) and comparing these two approaches. The previous Erlang
asynchronous implementation showed a small but statistically
significant improvement in terms of efficiency, compared to a syn-
chronous version. The results for the new Scala implementation
provide much stronger evidence for the superiority of a massively
concurrent EMAS implementation over a traditional, synchronous
one.

In the next sections we present the current state-of-the-art and
introduce concepts of evolutionary multi-agent systems. Then, we
describe the implementation of the synchronous and asynchronous
versions of our algorithm, followed by our experimental settings
and results. We end with a discussion of our results and conclude
the paper with possible opportunities for future work.

2. Large-scale agent-based systems

The development of the software agent concepts and the theory
of multi-agent systems took place in the last decades of the 20th
century. At this point in time, the software engineering domain
was strongly focused on the popularization of the object-oriented
paradigm. As a result, the majority of agent systems and platforms
for agent systems development was based on imperative languages
with shared memory. This approach is in opposition to the assump-
tions of agent systems, which are based on the concept of message
passing, communication between autonomous execution threads
and do not allow any explicit shared state.

Implementations of message passing concurrency in object ori-
ented technologies resulted in significant limitations in both scale
and performance of the developed solutions. The evaluation pre-
sented in [31] shows that the most popular agent development
platforms (JADE and Magentix) are limited to several thousands
of simultaneous agents on a single computer. The limit was caused
by the method used for implementing concurrently executing code
of agents – each agent required a separate operating system thread.
This situation inhibited the development of large scale multi-agent
systems for long time.

Current trends in the domain of programming languages devel-
opment focus on the integration of concepts from different
paradigms and on the development of new languages dedicated
for particular purposes. The renewed interest in the functional
paradigm seems very significant in the context of agent systems
development. The agent system for human population simula-
tion, presented in [12], was implemented in Haskell. The authors
emphasize that the source code was very short in respect to the
complex functionality of the system. The discussion presented in
[14] focuses on the language features of Haskell in the context of
agent systems. The authors show the usefulness of algebraic data
types, roles and sessions in implementation of multi-agent algo-
rithms.

The popularization of the functional paradigm concepts is
mostly caused by difficulties in efficient usage of multi-core CPUs
in languages implementing a shared-memory concurrency model.
The need of synchronization of all the operations on shared mem-
ory effectively prevents the applications from scaling on higher
numbers of cores. The issue does not exist in the message passing
concurrency model, which allows massively concurrent applica-
tions to run effectively on parallel hardware architectures. This fact

triggered the development of languages and runtime environments
which efficiently implement the message passing concurrency
model. There are currently two major technologies of this kind
being successfully used in industrial applications: Erlang and Scala
with the Akka library.

The concurrency model implemented by these technologies is
based on the same assumptions as in the case of software agents.
Therefore, these technologies are a very good basis for large scale
and high performance multi-agent systems. Recent example of a
Scala-based implementation of a custom multi-agent architecture
can be found in [22], where the authors present a system capable of
processing and storing a large amount of messages gathered from
sensing different devices.

Erlang technology has been found useful in this kind of applica-
tions much earlier. In 2003 the first agent development platform,
called eXAT (erlang eXperimental Agent Tool), has been presented in
[11]. The goal of this platform was to test the feasibility of using
functional programming languages as a development tool for FIPA-
compliant agents. An agent in eXAT is an actor-based, independent
entity composed of behaviours, which represent the functionality
of an agent as a finite-state machine. Transitions between states
are triggered by changes in the knowledge-base facts or by exter-
nal messages. The original version of eXAT does not support agent
migrations, however there is a version supporting this functionality
[25].

eXAT platform overcomes the basic limitations of Java-based
solutions. eXAT agents are based on Erlang lightweight processes,
which can be created in millions on a single computer. Although the
platform never became a mainstream tool, it should be noticed that
it was the first environment which allowed to test the behaviour of
large scale systems with truly parallel agents.

Recent years brought different solutions based on Erlang
technology, like the eJason system [10]. eJason is an Erlang imple-
mentation of Jason, which is a platform for the development of
multi-agent systems developed in Java. The reason for rewriting
the Jason platform in Erlang, pointed by the authors, are significant
similarities between Jason agents and Erlang processes and the high
performance and scalability of Erlang processes implementation.

The ability to build and test massively concurrent agent-based
systems opens new possibilities of research in this domain. The
algorithm presented in this paper is made possible by the high-
performance implementations of a message-passing concurrency
model offered by Erlang and Scala.

3. Evolutionary multi-agent systems (EMAS)

Generally speaking, evolutionary algorithms are usually
perceived as universal optimization-capable metaheuristics (cf.
theory of Vose [32]). However, the classical designs of evolution-
ary algorithms (such as simple genetic algorithm [13], evolution
strategies etc. [30]) assume important simplifications of the under-
lying biological phenomena. Such simplification mainly consists
in avoiding direct implementation of such phenomena observed
in real-world biological systems, as dynamically changing envi-
ronmental conditions, a dependency on multiple criteria, the
co-evolution of species, the evolution of the genotype–phenotype
mapping, the assumption of neither global knowledge nor genera-
tional synchronization.

Of course, it does not mean that they are wrong per-se, as they
have clearly proven themselves in solving difficult problems. How-
ever, there is still room for improvement, and the No Free Lunch
Theorem [33] reminds us that the search for new optimization
techniques will always be necessary.

One of the important drawbacks of classical evolutionary
techniques is that they work on a number of data structures

44 3.3. Execution model based on actors

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

D. Krzywicki et al. / Journal of Computational Science 11 (2015) 153–162 155

Fig. 1. Structure and behaviour of EMAS operation.

(populations) and repeat in cycles (generations) the same process
of selecting parents and producing offspring using variation opera-
tors. Such an approach makes it difficult to implement large-scale,
parallel implementations of evolutionary algorithms. Only trivial
approaches to the parallelization of such algorithms were proposed
(e.g. the master–slave model or parallel evolutionary algorithm [8]).

For the over 10 years, our group tried to overcome some of
these limitations by working on the idea of decentralised evolution-
ary computations [2], namely evolutionary multi-agent systems
(EMAS) [9]. EMAS is a hybrid meta-heuristics which combines
multi-agent systems with evolutionary algorithms. The basic idea
of EMAS consists in evolving a population of agents (containing
the potential solutions to the problem in the form of genotypes).
The agents are capable of doing different actions, communicating
among themselves and with the environment, in order to find the
optimal solution of the optimization problem.

According to classic definitions (cf. e.g., [17]) of a multi-agent
system, there should not be global knowledge shared by all of the
agents. They should remain autonomous without the need to cre-
ate any central authorities. Therefore, evolutionary mechanisms
such as selection needs to be decentralized, in contrast with tradi-
tional evolutionary algorithms. Using agent terminology, one can
say that selective pressure is required to emerge from peer to peer
interactions between agents instead of being globally driven.

Thus, selection in EMAS is achieved by introducing a non-
renewable resource, called life-energy. Agents receive part of the
energy when they are introduced in the system. They exchange
energy based on the quality of their solution to the problem: worse
agents move part of their energy to the better ones. The agents
reaching certain energy threshold may reproduce, while the ones
with low amount of energy die and are removed from the system.
We show the principle of these operation in Fig. 1. For more details
on EMAS design refer to [2].

Up till now, different EMAS implementations were applied
to different problems (global, multi-criteria and multi-modal

optimization in continuous and discrete spaces), and the results
clearly showed superior performance in comparison to classical
approaches (see [2]). It is to note, that besides acclaimed benchmark
problems, as multi-modal functions [26,5,3], and discrete bench-
marks with clear practical application, like Low Autocorrelation
Binary Sequence or Golomb Ruler problem [19,18] EMAS was also
successfully applied to solving selected inverse problems [34,28]
leveraging its capability of quite low computational cost evalu-
ated as number of fitness function calls, compared to other classic
approaches.

During the last years, we made also several approaches to
construct efficient software targeted at variants of EMAS and at
agent-based computing in general. We implemented dedicated
tools in order to prepare fully fledged frameworks convenient for
EMAS computing (and several other purposes, as agent-based sim-
ulation). First, we focused on implementing decentralized agent
behaviour, and the outcome were several fully synchronous ver-
sions, resulting in the implementation of the AgE platform.2

In this implementation we applied a phase-model of simula-
tion, efficiently implementing such EMAS aspects as decentralized
selection. We also supported the user with different component-
oriented utilities, increasing reuse possibilities and allowing
flexible configuration of the computing system.

In a recent paper [21], we have presented a promising new
approach to these kinds of algorithms. We used Erlang lightweight
processes to implement a fine-grained multi-agent system. Agents
are fully asynchronous and autonomous in fulfilling their goals,
such as exchanging resources with others, reproducing or being
removed from the system. Agents are able to coordinate their
behaviour with the use of mediating entities called meeting arenas.

This approach brings us closer to the biological origins of evolu-
tionary algorithms by removing artificial generations imposed by

2 http://age.agh.edu.pl.

3.3. Execution model based on actors 45

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

156 D. Krzywicki et al. / Journal of Computational Science 11 (2015) 153–162

Fig. 2. Concept of generation-oriented and generation-free evolutionary computing.

step-based implementations. We show the concept of generation-
oriented and generation-free computing in Fig. 2.

The first case (a) shows the classical approach, consisting in
transforming a population of individuals by applying a stochastic
state transition function. This function is usually composed of some
predefined operators, such as selection, crossover and mutation.
The second case (b) shows the EMAS approach (as it was real-
ized in AgE platform), where different transformation functions are
applied as the results of agent actions. This model still assumes the
existence of generations, but on a technical level, as a result of a
step-based simulation. In fact, both above cases use discrete-time
based simulation.

In contrast, the third case (c) is a nearly continuous-time simu-
lation (if we disregard the discrete nature of the machine itself). In
this model, all agents may initiate actions at any possible time. The
process scheduler makes sure they are given computing resources
when they need them.

4. Massively concurrent EMAS implementation

The system presented in this work has been implemented in
Erlang and Scala, as the lightweight concurrency model provided
by these technologies is well suited for creating large-scale multi-
agent systems. The implementation focuses on comparing different
computational models in terms of their features and efficiency. The
rest of this section describes the algorithms used in our evolu-
tionary multi-agent system, the model of agents interactions and
different implementations.

4.1. Principle of system operation

Every agent in the system is characterized by a vector of real
values representing potential solution to the optimization problem.
The vector is used for calculating the corresponding fitness value.
The process of calculating the fitness value for a given solution is the
most expensive operation. It is executed each time a new solution
is generated in the system.

Emergent selective pressure is achieved by giving agents a piece
of non-renewable resource, called energy [2]. An initial amount of
energy is given to a newly created agent by its parents. If the energy
of two agents is below a required threshold, they fight by comparing
their fitness value – the better agent takes energy from the worse
one. If an agent looses all its energy, it is removed from the system.
Agents with enough energy reproduce and yield new agents. The
genotype of the children is derived from their parents using varia-
tion operators. The number of agents may vary over time, however
the system remains stable as the total energy remains constant.

As in the case of other evolutionary algorithms, the population
of agents can be split into separated sub-populations. This approach
helps preserving population diversity by introducing allopatric spe-
ciation and can also simplify parallel execution of the algorithm. In

our case the sub-populations are called islands. Information can be
exchanged between the islands through agent migrations.

4.2. Arenas

An efficient implementation of meetings between agents is cru-
cial for the overall performance of the algorithm. The meetings
model has a significant impact on the properties of the algorithm,
on its computational efficiency and on its potential for parallel exe-
cution.

A general and simple way to perform meetings is to shuffle the
list of agents and then process pairs of agents sequentially or in
parallel. However, this approach has several limitations:

• The whole population must be collected in order to shuffle agents
and form the pairs. This approach is inappropriate in an algorithm
which should be decentralized by nature.

• Agents willing to perform different actions can be grouped
together – all combinations of possible behaviours must be han-
dled.

In our previous work [20], a different approach was proposed.
We proposed to group agents willing to perform the same action
in dedicated meeting arenas, following the Mediator design pat-
tern. Every agent enters a selected arena depending on its amount
of energy. Arenas split incoming agents into groups and trigger
the actual meetings (see Fig. 3). Each kind of agent behaviour is
represented by a separate arena.

Therefore, the dynamics of the multi-agent system are fully
defined by functions. The first function represents agent behaviour,
which chooses an arena for each agent. The second function repre-
sents the meeting operation which is applied in every arena.

This approach is similar to the MapReduce model, where arena
selection corresponds to mapping and meeting logic to reduce
operation. The pattern is very flexible, as it can be implemented

Fig. 3. Meeting arenas group similar agents and coordinate meetings between them.

46 3.3. Execution model based on actors

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

D. Krzywicki et al. / Journal of Computational Science 11 (2015) 153–162 157

in both a centralized and synchronous way or a decentralized and
asynchronous one.

4.3. Sequential implementation

The sequential version of the presented multi-agent system
is implemented as a discrete event simulation. In each step the
behaviour function (see Listing 1) divides the population of agents
into groups corresponding to available arenas.

Listing 1. In every step, agents choose an arena based on their
current state

1 def behaviour (a: Agent) = a. energy match {
2 0 => death
3 x if x > 10 => reproduction
4 x => fight
5 }

Agents are first grouped according to their chosen arena and
then a meeting function is applied on each such partition of the
population. The partitions can be further subdivided into pairs of
meeting agents and processed by applying a different meeting func-
tion which depends on the type of the arena (see Listing 2). Every
meeting results in a group of agents. The group can contain some
new agents created as a result of reproduction and some with their
state changed (e.g. by transferring energy). Some agents may be
removed from the group if their energy equals 0. Resulting groups
are merged in order to form the new population, which is randomly
shuffled before the next step.

Listing 2. Depending on the type of the arena, a different meeting
happens, which transforms the incoming subpopulation of agents.
The death arena simply return an empty sequence. Other arenas
shuffle incoming agents, group them into pairs and apply a binary
operator on every pair, concatenating results.

1 def meeting (arena: Arena, agent s: Seq [Agent]) =
2 arena match {
3 death =>
4 Seq. empty [Agent]
5 reproduction =>
6 agents
7 .shuffle
8 .grouped (2)
9 .flatMap (doReproduce)
10 fight =>
11 agents
12 .shuffle
13 .grouped (2)
14 .flatMap (doFight)
15 }

If several islands are considered, each is represented as separate
lists of agents. Migration between islands is performed at the end
of each step by moving some agents between lists.

4.4. Hybrid implementation

The introduction of coarse-grained concurrency in such a
multi-agent system is rather straightforward. In our second
implementation every island is assigned to a separate Erlang
process/Scala actor responsible for executing the loop of the
sequential algorithm described above. Islands communicate
through message-passing, no other synchronization is needed.

The most significant difference regards agent migration. The
behaviour function from Listing 1 is modified by adding a migration
action which is chosen with some fixed, low probability. The migra-
tion process is performed by a dedicated migration arena present
on every island.

The migration arena removes agent from the local population
and forwards it agent to a selected island chosen according to
some topology and migration strategy. In every step the processes
responsible for executing islands loop incorporates the incoming
agents into their population.

4.5. Concurrent implementation

The first two implementations presented so far do not require
massively concurrent execution, as the agents are represented as
data structures processed sequentially by islands and arenas. Such
approach does not reflect the autonomy of entities in the popula-
tion and the true dynamics of relation between the entities, as each
agent is forced to perform exactly one operation in each step of the
algorithm.

In order to achieve asynchronous behaviours of agents in the
population, every agent and every arena has been implemented
as a separate process/actor which communicates with the out-
side world only through message passing. The algorithm becomes
fully asynchronous, as every agent acts at its own pace and there
is no population-wide step. Meeting arenas are especially useful
in this implementation, as they greatly simplify communication
protocols.

The algorithm of each agent is relatively simple. Depending on
its current energy, every agent selects the action to perform and
sends a message to the appropriate arena. Afterwards it waits for a
message with the results of the meeting.

As soon as enough agents gather in an arena, a meeting is trig-
gered. As a result, new agents may be created and existing agents
may be killed or replied with a message containing their new state.

Islands are logically defined as distinct sets of arenas. Each agent
knows the addresses of all the arenas defining a single island, there-
fore it can only meet with other agents sharing the same set of
arenas. Fights and reproductions arenas behave just as described
in the previous version of the algorithm.

This migration process is greatly simplified in this version.
Migrating an agent simply means changing the arenas it meets on.
Migration arenas choose an island according to specified topology
and send the addresses of the corresponding arenas back to the
agent. The agent updates the set of arenas available to itself and
resumes its behaviour. As it will now be able to meet with a different
set of agents, it has indeed migrated.

The implementations in Erlang and Scala are relatively similar,
as both realize exactly the same algorithms. In case of first two
approaches (sequential and hybrid) no differences in behaviour
of the implemented system was expected. On the other hand
the execution of massively concurrent version can be significantly
dependent on scheduling mechanisms implemented by the under-
lying process management system. The time of activities performed
by each agent depends on the provided CPU access.

The details of process scheduling mechanisms implemented by
Erlang and Scala (Akka) are slightly different. Erlang was designed
as a soft real-time platform, which means that each a process can be
preempted in every moment in time, and none can claim more com-
putational time than the others. The model implemented by Scala
is more suited for reactive, message-driven programming, where a
process can use CPU until it finished processing current messages.
These tiny differences can influence the overall performance of the
implemented systems but also can result in different behaviour of
the populations.

Another difference is memory management. In Erlang, every
process owns a separate stack and the content of messages needs
to be copied between process memories. Scala uses the Java Mem-
ory Model and adds a message-passing layer on top of shared
memory. The Akka actor library follows the principle “going from
remote to local by way of optimization”, therefore communication

3.3. Execution model based on actors 47

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

158 D. Krzywicki et al. / Journal of Computational Science 11 (2015) 153–162

Fig. 4. Best fitness ever over time, depending on the model and the number of cores. Stripes indicate 95% confidence intervals. 10−16 constant has been added to the fitness
values to visualize the global optimum.

within a single Java Virtual Machine is very memory efficient, as
immutable messages are safe to be shared between the sender and
receiver.

5. Methodology and results

We used our multi-agent system to minimize the Rastrigin
function, a common benchmarking function used to compare evo-
lutionary algorithms. This function is highly multimodal with many
local minima and one global minimum equal 0 at x̄ = 0. We used
a problem size (the dimension of the function) equal to 100, in a
domain equal to the hypercube [− 50, 50]100.

The simulations were run on Intel Xeon X5650 nodes provided
by the Pl-Grid3 infrastructure at the ACC Cyfronet AGH.4. We used
up to 12 cores and 1 GB of memory.

We tested the alternative approaches described in the previous
section, implemented in both Erlang and Scala. The experiments for
hybrid and concurrent models were run on 1, 2, 4, 8 and 12 cores.
A sequential version in each language was also run on 2 cores (the
second core being used for logging an management) – more cores
did not improve the results.

3 http://www.plgrid.pl/en.
4 http://www.cyfronet.krakow.pl/en/.

48 3.3. Execution model based on actors

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

D. Krzywicki et al. / Journal of Computational Science 11 (2015) 153–162 159

Fig. 5. The relation of the number of reproductions per second to the number of cores, for each model and implementation, along with 95% confidence intervals.

Every experiment lasted 15 min and was repeated 30 times in
order to obtain statistically significant results. The results further
below are averaged over these 30 runs.

The hybrid model does not benefit from a number of cores higher
than the number of islands. As we had 12 cores at our disposal, we
used 12 islands in every experiment. Migration destinations were
chosen at random in a fully connected topology.

Results. We examined our models under two criteria: how well
the algorithm works and how fast the meeting mechanism is.

We assessed the quality of the algorithm by recording: the fit-
ness of the best solution found so far at any given time on any island
(see Fig. 4).

We estimated the speed of the models by counting the amount
of agent meetings performed in a unit of time. These numbers

appeared to be proportionally related across different arenas.
Therefore, we only consider below the amount of reproduc-
tions per second (see Fig. 5). The number of reproductions may
depend not only on the implementation and number of cores
but also on the algorithm itself. Therefore, it is a useful met-
ric of speed when comparing the same model but with different
implementations and numbers of cores. However, the number
of reproductions relates to the number of fitness function eval-
uations, it is also a metric of efficiency between the alternate
models.

Discussion. The results of the optimisation experiments are
shown in Fig. 4. Both models in both implementations improve
when cores are added. The sequential versions in both Erlang and
Scala behaved just like the hybrid models with 1 core, minus some

3.3. Execution model based on actors 49

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

160 D. Krzywicki et al. / Journal of Computational Science 11 (2015) 153–162

small communication overhead, so these results are omitted fur-
ther on.

The results for the Erlang and Scala implementations are similar
in the early stages of experiments. In the later stages, the Erlang ver-
sion becomes much slower than the Scala one. However, a close-up
on the Erlang results reveals that its characteristics are also similar
to the Scala results, but over a larger timespan.

The Scala results show that the hybrid version is initially faster.
However, the concurrent model takes over at some point and
becomes much more effective than the hybrid model in the later
stages. In fact, in the case of 12 cores, 100% of the experiments

with the concurrent model found the global optimum by the 12th
minute of the experiments.

Another difference between the models is the number of repro-
duction happening every second (Fig. 5). In the case of the Erlang
implementation, these numbers increase nearly linearly with the
increase of nodes.

In the Scala implementation, the concurrent version also scales
linearly, but the hybrid version drastically improves when the num-
ber of cores equals the number of islands. Looking at it another
way, the performance of the Scala hybrid model drastically declines
when there is less cores than islands, which is not the case of the

Fig. 6. Best fitness ever over the total number of reproductions. Confidence intervals are the same as in Fig. 4 and have been omitted for clarity.

50 3.3. Execution model based on actors

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

D. Krzywicki et al. / Journal of Computational Science 11 (2015) 153–162 161

Erlang implementation. In that regard, Erlang real-time scheduling
proves to be more efficient than naive JVM threading (thread per
island).

In both implementations the number of reproduction per sec-
ond is significantly smaller in the case of the concurrent version.
The interpretation can be twofold: on one hand, they may indicate
that the concurrent implementation is slow at processing agent
meetings. On the other hand, the number of reproductions reflect
the number of fitness evaluations. As the concurrent version still
achieves better results, but with fewer fitness evaluations, it can be
considered more efficient.

This observation becomes all the more evident when plotting
the best fitness over the number of total reproductions instead of
over time. Fig. 6 confirms that the concurrent and hybrid mod-
els are in fact two different algorithms. Increasing the number of
cores simply increases the number of reproductions per second and
therefore reduces the time to reach a given value. However, the con-
current version needs a much lower number of reproductions, and
therefore less function evaluations, to reach a given value.

This difference in dynamics could be explained in the following
way: in the hybrid version, agents in the population are effectively
synchronized, in the sense that all fights and all reproductions in a
step need to end for any agent to move on. In contrast, in the con-
current version fights happen independently of reproduction and
the population evolves in a much more continuous way. Informa-
tion spreads faster in the population and the solution can be found
with fewer generations.

Therefore, as the concurrent version needs less function evalu-
ation, we conjecture that it should perform even better compared
to the hybrid one when faced with real-life problems, where the
computation of the fitness function itself can take much time.

The difference in performance between the Erlang and Scala ver-
sions can have several causes. First, the Erlang VM is usually less
efficient than the Java VM when it comes to raw arithmetic. Both
languages use 64 bit floating point numbers, though, so problems
with numerical precision can be ruled out. Second, both languages
strongly differ in memory management. In Erlang, every process
owns a separate stack. With a few exceptions, all messages need to
be copied from the memory of one process to another, even if the
data is immutable and could be sent by reference. In contrast, Scala
and Akka are based on the shared Java Memory Model [23], but offer
different concurrency primitives in order to use message passing.
Therefore, immutable data can be transferred within a VM as fast
as in Java and as safely as in Erlang. All in all, the Scala implemen-
tation incurs less overhead and the differences in characteristics
between the algorithms are amplified. However, it is the insight
from designing the algorithm for Erlang first that led us to that
efficient implementation in Scala.

6. Conclusions

The massively concurrent implementation of a evolutionary
multi-agent system presented in this paper gives very promis-
ing results in terms of scalability and efficiency. Its asynchronous
nature allows to better imitate the mechanisms observed in bio-
logical evolution, going beyond the classical approach of discrete
generations and synchronous population changes.

We applied this algorithm to a popular optimization benchmark.
The results of our experiments indicate that when many agents
are involved, the concurrent model is significantly more efficient
in terms of approaching the optimum versus number of fitness
function evaluations. This result shows that this technique is very
promising when the complexity of fitness function is high (e.g. in
the case of solving inverse problems).

The key to achieve an efficient implementation was using Erlang
and Scala technologies, in particular their features like lightweight
processes and fast message passing concurrency. The Scala version
appears to be more efficient, mainly because of a better memory
management of the underlying library.

A further development of this method on modern multicore
supercomputers [16] seems a promising direction of research.
Broader tests will also be performed in multicore systems consist-
ing of a higher number of cores than examined here.

Acknowledgements

The research presented in the paper was partially supported
by the European Commission FP7 through the project ParaPhrase:
Parallel Patterns for Adaptive Heterogeneous Multicore Systems,
under contract no.: 288570 (http://paraphrase-ict.eu). The research
presented in this paper received partial financial support from
AGH University of Science and Technology statutory project. The
research presented in the paper was conducted using PL-Grid
Infrastructure (http://www.plgrid.pl/en).

References

[1] F. Bellifemine, A. Poggi, G. Rimassa, JADE: a FIPA2000 compliant agent
development environment, in: Proceedings of the Fifth International
Conference on Autonomous Agents, AGENTS’01, ACM, New York, NY, USA,
2001, pp. 216–217.

[2] A. Byrski, R. Dreżewski, L. Siwik, M. Kisiel-Dorohinicki, Evolutionary
multi-agent systems, Knowl. Eng. Rev. 30 (2015) 171–186.

[3] A. Byrski, W. Korczyński, M. Kisiel-Dorohinicki, Memetic multi-agent
computing in difficult continuous optimisation, in: Advanced Methods and
Technologies for Agent and Multi-Agent Systems, IOS Press, 2013, pp.
181–190.

[4] A. Byrski, R. Schaefer, M. Smołka, Asymptotic guarantee of success for
multi-agent memetic systems, Bull. Pol. Acad. Sci. – Tech. Sci. 61 (1) (2013).

[5] A. Byrski, Tuning of agent-based computing, Comput. Sci. (AGH) 14 (3) (2013)
491.

[6] A. Byrski, M. Kisiel-Dorohinicki, Agent-based model and computing
environment facilitating the development of distributed computational
intelligence systems, in: G. Allen, J. Nabrzyski, E. Seidel, G. van Albada, J.
Dongarra, P.M.A. Sloot (Eds.), Computational Science – ICCS 2009, Lecture
Notes in Computer Science, vol. 5545, Springer, Berlin/Heidelberg, 2009, pp.
865–874.

[7] A. Byrski, R. Schaefer, Formal model for agent-based asynchronous
evolutionary computation, in: Proceedings of the IEEE Congress on
Evolutionary Computation, CEC, Trondheim, Norway, 18–21 May, IEEE, 2009,
pp. 78–85.

[8] E. Cantú-Paz, A survey of parallel genetic algorithms, Calc. Paralleles Reseaux
Syst. Repartis 10 (2) (1998) 141–171.

[9] K. Cetnarowicz, M. Kisiel-Dorohinicki, E. Nawarecki, The application of
evolution process in multi-agent world (MAW) to the prediction system, in:
M. Tokoro (Ed.), Proc. of the 2nd Int. Conf. on Multi-Agent Systems
(ICMAS’96). AAAI Press, 1996.

[10] Á.F. Díaz, C.B. Earle, L.-Å. Fredlund, eJason: an implementation of Jason in
Erlang, in: M. Dastani, J.F. Hübner, B. Logan (Eds.), Programming Multi-Agent
Systems, Lecture Notes in Computer Science, vol. 7837, Springer,
Berlin/Heidelberg, 2013, pp. 1–16.

[11] A. Di Stefano, C. Santoro, eXAT: an experimental tool for programming
multi-agent systems in Erlang, in: WOA, 2003, pp. 1–127.

[12] A.U. Frank, S. Bittner, M. Raubal, Spatial and cognitive simulation with
multi-agent systems, in: D.R. Montello (Ed.), Spatial Information Theory,
Lecture Notes in Computer Science, vol., Springer, Berlin/Heidelberg, 2001,
pp. 124–139.

[13] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, 1989.

[14] C. Grigore, R. Collier, Supporting agent systems in the programming language,
in: 2011 IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT), Aug, vol. 3, 2011, pp. 9–12.

[15] O. Gutknecht, J. Ferber, The MadKit agent platform architecture, in:
Infrastructure for Agents, Multi-Agent Systems and Scalable Multi-Agent
Systems, 2001.

[16] K. Hammond, M. Aldinucci, C. Brown, F. Cesarini, M. Danelutto, H.
Gonzalez-Velez, P. Kilpatrick, R. Keller, M. Rossbory, G. Shainer, The
paraphrase project: parallel patterns for adaptive heterogeneous multicore
systems, in: FMCO: 10th International Symposium on Formal Methods for
Components and Objects-Revised Selected Papers, vol. 7542, Springer LNCS,
2013, pp. 218–236.

[17] N.R. Jennings, K. Sycara, M. Wooldridge, A roadmap of agent research and
development, J. Auton. Agents Multi-Agent Syst. 1 (1) (1998) 7–38.

3.3. Execution model based on actors 51

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

162 D. Krzywicki et al. / Journal of Computational Science 11 (2015) 153–162

[18] M. Kolybacz, M. Kowol, L. Lesniak, A. Byrski, M. Kisiel-Dorohinicki, Efficiency
of memetic and evolutionary computing in combinatorial optimisation, in: W.
Rekdalsbakken, R.T. Bye, H. Zhang (Eds.), Proceedings of the 27th European
Conference on Modelling and Simulation, ECMS, Ålesund, Norway, May
27–30, European Council for Modeling and Simulation, 2013, pp. 525–531.

[19] M. Kowol, A. Byrski, M. Kisiel-Dorohinicki, Agent-based evolutionary
computing for difficult discrete problems, in: D. Abramson, M. Lees, V.V.
Krzhizhanovskaya, J. Dongarra, P.M.A. Sloot (Eds.), Proceedings of the
International Conference on Computational Science, ICCS, Cairns, Queensland,
Australia, 10–12 June, vol. 29 of Procedia Computer Science, Elsevier, 2014,
pp. 1039–1047.

[20] D. Krzywicki, Ł. Faber, A. Byrski, M. Kisiel-Dorohinicki, Computing agents for
decision support systems, Future Gener. Comput. Syst. 37 (2014) 390–400.

[21] D. Krzywicki, J. Stypka, P. Anielski, Ł. Faber, W. Turek, A. Byrski, M.
Kisiel-Dorohinicki, Generation-free agent-based evolutionary computing,
Procedia Comput. Sci. 29 (2014) 1068–1077, 2014 International Conference
on Computational Science.

[22] B. Manate, V.I. Munteanu, T.-F. Fortis, Towards a scalable multi-agent
architecture for managing IOT data, in: 2013 Eighth International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), October, 2013,
pp. 270–275.

[23] J. Manson, W. Pugh, S.V. Adve, The java memory model, SIGPLAN Not. 40 (1)
(2005) 378–391.

[24] Z. Michalewicz, Genetic Algorithms Plus Data Structures Equals Evolution
Programs, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1994.

[25] M. Piotrowski, W. Turek, Software agents mobility using process migration
mechanism in distributed Erlang, in: Proceedings of the Twelfth ACM SIGPLAN
Workshop on Erlang, Erlang’13, ACM, New York, NY, USA, 2013, pp. 43–50.

[26] S. Pisarski, A. Rugała, A. Byrski, M. Kisiel-Dorohinicki, Evolutionary
multi-agent system in hard benchmark continuous optimisation, in: A.I.
Esparcia-Alcázar (Ed.), Applications of Evolutionary Computation, Lecture
Notes in Computer Science, vol. 7835, Springer, Berlin/Heidelberg, 2013, pp.
132–141.

[27] A. Pokahr, L. Braubach, K. Jander, The Jadex project: programming model, in:
M. Ganzha, L.C. Jain (Eds.), Multiagent Systems and Applications, Intelligent
Systems Reference Library, vol. 45, Springer, Berlin/Heidelberg, 2013, pp.
21–53.

[28] M. Polnik, M. Kumiega, A. Byrski, Agent-based optimization of advisory
strategy parameters, J. Telecommun. Inf. Technol. 2 (2013) 54–55.

[29] R. Schaefer, A. Byrski, J. Kolodziej, M. Smolka, An agent-based model of
hierarchic genetic search, Comput. Math. Appl. 64 (12) (2012) 3763–3776.

[30] H.-P. Schwefel, G. Rudolph, Contemporary evolution strategies, in: European
Conference on Artificial Life, 1995, pp. 893–907.

[31] W. Turek, Erlang as a high performance software agent platform, Adv.
Methods Technol. Agent Multi-Agent Syst. 252 (2013) 21.

[32] M. Vose, The Simple Genetic Algorithm: Foundations and Theory, MIT Press,
Cambridge, MA, USA, 1998.

[33] D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE
Trans. Evol. Comput. 67 (1) (1997).

[34] K. Wrobel, P. Torba, M. Paszynski, A. Byrski, Evolutionary multi-agent
computing in inverse problems, Comput. Sci. (AGH) 14 (3) (2013) 367–384.

D. Krzywicki obtained his M.Sc. in 2012 at AGH Univer-
sity of Science and Technology in Cracow and is currently
a Ph.D. student at the Department of Computer Science
of AGH-UST. His research interests include agent-based
computations, functional programming and distributed
systems.

W. Turek obtained his Ph.D. in 2010 at AGH University of
Science and Technology in Cracow. He works as an Assis-
tant Professor at the Department of Computer Science of
AGH-UST. His research focuses on agent-based systems,
multi-robot systems and functional programming.

A. Byrski obtained his Ph.D. in 2007 and D.Sc. (hab-
ilitation) in 2013 at AGH University of Science and
Technology in Cracow. He works as an Assistant Profes-
sor at the Department of Computer Science of AGH-UST.
His research focuses on multi-agent systems, biologically
inspired computing and other soft computing methods.

M. Kisiel-Dorohinicki obtained his Ph.D. in 2001 and D.Sc.
(habilitation) in 2013 at AGH University of Science and
Technology in Cracow. He works as an Assistant Professor
at the Department of Computer Science of AGH-UST. His
research focuses on intelligent software systems, particu-
larly using agent technology and evolutionary algorithms,
but also other soft computing techniques.

52 3.3. Execution model based on actors

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Journal of Computational Science 17 (2016) 234–248

Contents lists available at ScienceDirect

Journal of Computational Science

j ourna l h om epage: www.elsev ier .com/ locate / jocs

Highly scalable Erlang framework for agent-based metaheuristic
computing

Wojciech Turek, Jan Stypka, Daniel Krzywicki, Piotr Anielski, Kamil Pietak,
Aleksander Byrski ∗, Marek Kisiel-Dorohinicki
AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Al. Mickiewicza 30, 30-059 Krakow, Poland

a r t i c l e i n f o

Article history:
Received 30 June 2015
Received in revised form 1 March 2016
Accepted 2 March 2016
Available online 8 March 2016

Keywords:
Metaheuristic computing
Concurrent programming
Scalability
Erlang

a b s t r a c t

Difficult search and optimization problems, usually solved by metaheuristics, are very often implemented
in concurrent and parallel environment, as many metaheuristics (e.g. population- or agent-based) are
inherently easy to parallelize. Therefore search for easy-to-use, robust and efficient frameworks dedicated
for such computing methods, especially in the era of ubiquitous many and multi-core systems, is very
desirable. Indeed, the development of multi-core architectures is incredibly fast and multicore CPUs can
be found nowadays not only in supercomputers, but also in ordinary laptops or even phones. Efficient
use of multicore architectures requires applying suitable languages and technologies, like Erlang. Its
concurrency model, based on lightweight processes and asynchronous message-passing, seems very
well suited for running massively concurrent code on many cores. Most of existing Erlang industrial
applications are deployed on computers with up to 24 CPU cores, and there are hardly any reports on
using Erlang on architectures exceeding 32 physical cores. In this paper we present our experiences
with developing a concurrent Erlang-based computing platform, scaling computationally-intensive and
memory-intensive applications up to 64 cores, using as examples global optimization and urban traffic
planning problems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Tackling difficult search problems calls for applying unconven-
tional methods. This necessity is imposed by having little or no
knowledge of the intrinsic features of the problem, topology of
search space, etc. In such cases, approximate techniques, like meta-
heuristics become the methods of last resort. Having a plethora of
metaheuristics to choose from, those population-based (as opposed
to single solution oriented) seem to be the best choice, both at algo-
rithmic and implementation level, and as they process more than
one solution at a time, they can evade local extrema easier than
single-solution approaches. Moreover, it is easy to implement them
efficiently using ubiquitous parallel systems, such as multi-core
processors, graphical processing units, clusters and grids.

∗ Corresponding author.
E-mail addresses: wojciech.turek@agh.edu.pl (W. Turek), janstypka@gmail.com

(J. Stypka), krzywic@agh.edu.pl (D. Krzywicki), pr.anielski@gmail.com (P. Anielski),
kpietak@agh.edu.pl (K. Pietak), olekb@agh.edu.pl (A. Byrski), doroh@agh.edu.pl
(M. Kisiel-Dorohinicki).

Evolutionary processes are by nature decentralized and there-
fore evolutionary processes in a multi-agent system at a population
level may be easily introduced. It means that agents are able to
reproduce (generate new agents), which is a kind of cooperative
interaction, and may die (be eliminated from the system), which is
the result of competition (selection). This idea came into fruition by
Cetnarowicz in 1996 [1] as Evolutionary Multi-Agent System, and
since that time implemented (cf., e.g., [2–4]) a number of times, ana-
lysed [5] and extended [6,7]. It is to note that EMAS turned out to be
an efficient paradigm for solving different optimization problems
[8,9].

The development of multi-core architectures over the last
ten years is amazingly fast. Mainstream computer components
manufacturers compete with smaller companies and startups
in designing more and more sophisticated architectures, which
include tens (soon hundreds) of cores in a single processor. Archi-
tectures like Intel Xeon Phi [10] or Adapteva Epiphany [11] are
typically available as dedicated accelerators, however, general-
purpose many-core CPUs, like the 100-core EZchip TILE-MX [12]
will soon become standard equipment of computing stations.

This rapid development poses significant challenges for
the software industry which seems unprepared for using this

http://dx.doi.org/10.1016/j.jocs.2016.03.003
1877-7503/© 2016 Elsevier B.V. All rights reserved.

3.3. Execution model based on actors 53

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

W. Turek et al. / Journal of Computational Science 17 (2016) 234–248 235

computational power. The growing number of independent cores
available for a single process makes the most popular software
development technologies inefficient. Being based on imperative
programming paradigm and shared memory concurrency model,
the technologies are unsuitable for handling hundreds of simulta-
neously running tasks.

In this paper, we present and compare several approaches to
the problem of building a framework for metaheuristic comput-
ing in Erlang. Erlang [13] is a functional programming language,
which have been continuously developed by Ericsson since the
eighties of the last century. It was originally designed for pro-
gramming telecommunication devices, where features like massive
concurrency and durability are far more important than perfor-
mance. Erlang programs are executed in the Erlang Virtual Machine,
which implements its own lightweight processes, context switch-
ing with preemptive scheduler and message passing concurrency
model. Erlang processes do not share state and communicate using
asynchronous messages, which removes the possibility of creat-
ing synchronization bottlenecks. These features turn out to be very
desirable in the era of multi-core processors, therefore Erlang is
rapidly gaining popularity in the IT world as well. It has been
successfully used for implementing various messaging platforms
(RabbitMQ,1 MangooseIM2) and no-SQL database servers (Riak,3

CouchDB4). Its unique features are also an excellent foundation for
building agent systems [14].

Computations performed within the Erlang virtual machine are
often less efficient than similar algorithms written in different tech-
nologies, because compute-intensive applications have never been
the major target of Erlang creators. However unique features of
the Erlang technology allowed us to provide linear scalability of
agent-based metaheuristic computing framework on a many-core
architecture. This future can very important in the upcoming era of
many-core hardware.

The created framework has been tested on two different types of
computations. Firstly, we used a typical benchmark function with
many local minima, which required time-consuming evaluation
without complex operation on memory. In order to further evaluate
features of the developed solution, a real life optimization problem
has been considered. The problem of micro-scale urban traffic plan-
ning was solved using a novel, multi-variant planning approach,
which continuously prepares various solutions to the most prob-
able situations on the managed crossroad. This problem requires
performing costly computations together with memory-intensive
operations. We show that the scalability of certain internal mech-
anisms of the Erlang VM can be limited and we present several
methods of diagnosing the reasons of particular problems and solu-
tions to improve the scalability of Erlang.

After the introduction, we present our parallel computing model
(an evolutionary multi-agent system, eMAS), as a universal opti-
mization algorithm, along with the description of its parallel
implementation using the functional approach. Then, we present
the architecture of our Erlang computing framework and the details
of four different implementations of eMAS. Next, we show how
to scale the Erlang VM up to 64 cores, by reporting the problems
we encountered and the solutions we found, along with experi-
mental results illustrating consecutive steps. Finally, we describe
a real-life problem of traffic management planning, presenting its
implementation, our results and conclusions.

1 RabbitMQ, an open-source messaging broker, http://www.rabbitmq.com/.
2 MangooseIM, massively-scalable XMPP server, http://www.erlang-solutions.

com/products/mongooseim.html.
3 Riak, no-SQL key-value data store, http://basho.com/products/%23riak.
4 CouchDB, a document-oriented database, http://couchdb.apache.org/.

2. Agent-oriented frameworks and computing

Agent-based software environments use agents as basic units of
software abstraction. They focus on inter-agent relations and intra-
agent intelligence, provide facilities for the discovery of agents,
communication, life-cycle management, etc. The FIPA 5 standard
allows to create such open, interoperable multi-agent systems,
where fully-fledged autonomous software agents can express their
needs or perceive the environment (and other agents) using spe-
cific languages, ontologies, etc. The most established solutions of
this kind include JADE [15] and JADEX [16]. However, the approach
of open systems with heavy agents is not applicable for computa-
tional systems – granularity of agents is similar to services in SOA
(service-oriented architecture).

In case of simulations or computations, where the introduction
of agents facilitates the modelling of complex phenomena, such
as natural or social ones, agents constitute building blocks of the
model. This approach is utilized in frameworks such as Mason,
RePast or MadKit.

The first one, MASON [17], is a single-process discrete-event
simulation core and visualization library written in Java developed
at George Mason University. It is supposed to support efficiently up
to a million agents without visualization facilities. The multi-layer
architecture brings complete independence of the simulation logic
from visualization tools. There are none ready-to-use distributed
computing facilities, however it can be integrated into larger exist-
ing libraries. The programming model of MASON follows the basic
principles of object-oriented design. Agents are lightweight enti-
ties represented as Java objects with step method. They are added
to a scheduler and their step method is called during the simula-
tion. Agents API is flexible and allows to model various computation
models, but there is no built-in metaheuristics.

RePast [18] is a widely used agent-based modelling and simula-
tion tool. It has multiple implementations in several languages (e.g
RePast Simphony in Java and RePast HPC written in C++) and built-
in adaptive features such as genetic algorithms and regression.
The framework uses fully concurrent discrete event scheduling.
Dynamic access to the models in the runtime (introspection) is
possible using a graphical user interface. The RePast distribution
has a large footprint: included in the package are neural networks,
genetic algorithms, social network modelling, dynamic systems
modeling, logging, GIS, and graphs and charts [17].

MadKit is a modular and scalable multi-agent platform written
in Java, aimed at modelling different agent organizations, groups
and roles in artificial societies. It is built based on a so-called
Agent/Group/Role organizational model, using a plugin-based
architecture. The architecture of MadKit is based on micro-kernels
which provide only the basic facilities: local messaging, manage-
ment of groups and roles, launching and killing of agents. Other
features (remote messages, visualization, monitoring and control of
agents) are performed by agents. Both thread based and scheduled
agents may be developed.

All of the above platforms provide wide range of facilities sup-
porting agent-based computations and simulations. They all are
built using imperative languages such as Java or C++. Agents are
represented as simple objects sequentially executed by a scheduler
(so-called steppable agents) or as heavy agents usually executed as
separated threads.

This approach makes the implementation of agent-based sys-
tems a very natural, as both concept and implementation paradigm
are agent-oriented. Therefore it is very easy to map the agent
concept onto the framework. However, we have been working

5 Foundation for Intelligent Physical Agents http://www.fipa.org/.

54 3.3. Execution model based on actors

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

236 W. Turek et al. / Journal of Computational Science 17 (2016) 234–248

for over 15 years on developing agent-based computing algo-
rithms and implementing them using dedicated frameworks,
not necessarily agent-oriented. This was caused by the observa-
tion, that computing-agents can be implemented as “lightweight
agents”, not necessarily requiring complex methods such as
agent-communication languages, code-migration and ontologies
for modelling of the data processed and the whole environment.
Instead, we focused on implementing the framework in such way,
that other important factors of such complex systems might be
emphasized, such as flexibility, extensibility, scalability. It lead us
to utilizing such technologies as Java, Python, Scala and Erlang (cf.,
e.g., [19–21]).

There above-cited different agent-based frameworks, such as
RePast [18], MASON [17], MadKit [22], JADE [15] are seldom used
for computing purposes. Instead more focused frameworks are
constructed, as e.g. ParadisEO [23] or AgE [19]. These are often
advocated as open-source and freely available, thanks to their
creator’s generosity. Some of these platforms leverage existing
multi-core architectures (e.g. Paradiseo), however there is not too
many reports on their scalability, although having such hardware
easily available nowadays, as 64 core processors, encourages for
doing such research. Nevertheless, let us refer to some of such
research here, intentionally focusing on parallel frameworks (leav-
ing the distributed ones for further research, when we have an
appropriately-prepared framework available.

In [24], the authors present an implementation of a Java-based
agent-oriented system, achieving linear scalability up to 8 cores.
Another framework, also implemented in Java, this time devoted for
simulation, appears to be able to scale up to 8 cores [25]. In [26] the
authors show an implementation of a C++/MPI scalable simulation
platforms for spatial simulations of particles movement, achiev-
ing linear scalability up to 64 cores. In [27] ParadisEO scalability is
tested, reaching linear speedup up to 10 cores (the implementation
is realized using C++).

However, to fully leverage the existence of multi- and many-
core computers, the community of language developers seem to
agree that a paradigm shift is needed [28]. Efficient development of
software for many-core architectures will require high level func-
tional languages with immutable variables, no shared state and
message-passing concurrency. Some of these relatively old con-
cepts are being adopted in new and existing languages, like C++,
Java or Scala. These are also the most basic assumptions of Erlang
programming language.

Erlang [29] is a high level functional language which has proven
to be an efficient tool for building large-scale systems for multi-core
processors. The concurrency model based on lightweight processes
seems very well suited for running massively concurrent code on
many cores or processors. Therefore, it might seem that Erlang is
a good programming choice for parallel computing on many-core
architectures. Finding out that it is not that simple cost us a lot of
research effort, which we summarize in this paper.

Most of Erlang industrial applications are deployed on comput-
ers with up to 24 CPU cores. Scalability of solutions is provided by
using clusters of computers – running Erlang in distributed con-
figuration. Actually, the Erlang/OTP team developing the virtual
machine does not test the implementation on bigger architectures.6

There are few reports on using a single Erlang virtual machine
on architectures exceeding 32 physical cores. In [30] the authors
present a test suite for measuring different aspects of Erlang appli-
cations performance. The exemplary test running on a 64-core
machine shows that in most cases the speedup is non-linear and
it degrades for high number of cores and schedulers. The problem

6 Based on a discussion with an OTP member at the Erlang User Conference in
Stockholm, 2014.

of Erlang term storage scalability on a computer with 32 physi-
cal cores have been considered in [31]. Promising results of using
Erlang on a Intel Xeon Phi coprocessor have been shown in [32].
Basic benchmarks show good scalability up to 60 cores, which is
the number of physical cores of the coprocessor. However, there are
hardly any reports on scaling complex, computationally intensive
Erlang applications on many-core architectures.

The computing framework presented in this paper has a coun-
terpart implemented in Scala7 [33], being a subject of research on
the same concurrent implementation style yet using other technol-
ogy. The comparison of these platform became the main subject of
other publications of our research team.

3. Computing models for agent-based metaheuristics

Various models of parallel implementations of evolution-
ary algorithms have already been proposed [34]. The standard
approach (sometimes called a global parallelization) consists in dis-
tributing selected steps of the sequential algorithm among several
processing units. Decomposition approaches are based on defining
different complex models such as coarse-grained and fine-grained
parallel evolutionary algorithms. There are also methods which use
some combination of the models described above (hybrid parallel
evolutionary algorithms).

Agents play an important role in the integration of artificial
intelligence subdisciplines, which is often related to a hybrid design
of modern intelligent systems [35]. In some similar applications
reported in the literature (see, e.g. [36,37] for a review), an evo-
lutionary algorithm is used by an agent to facilitate the execution
of some of its tasks, often connected with learning or reasoning,
or to support coordination of some group (team) activity. In other
approaches, agents constitute a management infrastructure for a
distributed realization of an evolutionary algorithm [38]. A quite
similar approach is proposed by Liu et al. [39,40] where agents are
situated on the lattice, derivatives of their fitness are encoded in a
form of energy function and dedicated operators for reproduction
and removal of the individuals are introduced (mimicking cellular
evolutionary algorithms [41]). A very interesting example of par-
allel metaheuristics platform is EvoSpace capable of running as a
service on cloud [42]. Metaheuristics are also implemented in P2P
networks [43].

In this section, starting from an EMAS [1] being an example of
general-purpose agent-based metaheuristic, concurrent, scalable
way of implementation and relevant Erlang-based software plat-
form are presented.

3.1. Evolutionary multi-agent system

Evolutionary multi-agent systems are a hybrid meta-heuristic
which combines multiagent systems with evolutionary algorithms.
The idea consists in evolving a population of agents to improve their
ability to solve a particular optimization problem [44,5].

In a multi-agent system no global knowledge is available to indi-
vidual agents. Agents should remain autonomous and no central
authority should be needed. Therefore, in an evolutionary comput-
ing system, selective pressure needs to be decentralized, in contrast
with traditional evolutionary algorithms. Using agent terminol-
ogy, we can say that selective pressure is required to emerge from
peer to peer interactions between agents instead of being globally-
driven.

In a basic algorithm, every agent is assigned with a real-
valued vector representing a potential solution to the optimization

7 http://github.com/ParaPhraseAGH/scala-mas.

3.3. Execution model based on actors 55

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

W. Turek et al. / Journal of Computational Science 17 (2016) 234–248 237

Fig. 1. EMAS structure and principle of work.

problem, along with the corresponding fitness. Emergent selec-
tive pressure is achieved by giving agents a single non-renewable
resource called energy. Agents start with an initial amount of
energy and meet randomly. If their energy is below a threshold,
they fight by comparing their fitness – better agents take energy
from worse ones. Otherwise, the agents reproduce and yield a new
one – the genotype of the child is derived from its parents using
variation operators and it also receives some energy from its par-
ents. The system is stable as the total energy remains constant, but
the number of agents may vary and adapt to the difficulty of the
problem (see Fig. 1).

As in other evolutionary algorithms, agents can be split into
separate populations. Such sub-populations, called islands, help
preserve diversity by introducing allopatric speciation and can
also execute in parallel. Information is exchanged between islands
through agent migrations.

It should be noted, that the EMAS computing abilities were for-
mally proven by constructing a detailed Markov-chain based model
and proving its ergodicity [45,5], showing EMAS as a general opti-
mization tool.

3.2. Interaction and execution models for agents

In agent-oriented computing systems, agent interactions are
one of the crucial aspects of their work. It is easy to predict that
parallelizing them can significantly increase the throughput of
the system. However, this comes at the cost of increased com-
munication and synchronization. Therefore, an important issue
is to choose the appropriate granularity of the entities in the
computation.

As agents are defined as autonomous and independent beings, it
seems natural to look for further concurrency within a single envi-
ronment. The question is where to put the boundaries of concurrent
execution, as it has consequences on both performance and ease of

programming. This section discusses the most common models of
execution and interaction in existing agent software [33].

3.2.1. Heavyweight agents
In this model every agent is associated with a thread and com-

municates through message passing. Some agents may passively
wait for incoming messages and react to them. Other agents may
actively initiate interactions with other agents. It is difficult to
achieve a coordinated life cycle among such agents, since the
corresponding threads may be arbitrary interleaved. Therefore,
some kind of synchronization between agents still needs to be
introduced, usually in terms of a specific communication protocol.

In order to interact with each other, agents need to locate other
agents willing to perform the same actions. For example, in an
evolutionary multi-agent system, an agent with enough resources
to reproduce needs to find another one which also has enough
resources. In order to do that, it could ask all other agents in the pop-
ulation. However, such a solution is obviously inefficient, because
of the intensity and redundancy of the required communication.

A better approach, introduced in [33], is to use a mediating
entity, which we call a meeting arena. Every time an agent wants
to perform an action, it chooses an appropriate arena based on its
energy level in order to meet with other similar agents (see Listing
1). The arena is then able to partition its members in groups of
some given arity and mediate the meeting itself (see Fig. 2). The
arena code responsible for administering and processing meetings
is presented in the Listing 2. It shows the logic executed for each
different meeting that is matched in the function clause.

The usage of meeting arenas should bring many benefits, not
only in terms of efficiency, as the algorithm itself can be structured
more clearly. Agents only need to be given a set of rules, in order
to choose an arena on the basis of their state. The actual proto-
col of agents interactions can then be defined at the level of the
appropriate arena.

56 3.3. Execution model based on actors

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

238 W. Turek et al. / Journal of Computational Science 17 (2016) 234–248

Listing 1. In every step, agents choose an arena based on their current state.

Listing 2. Arenas process partitions of the population and trigger agent meetings.

Fig. 2. Meeting arenas allow to group similar agents and coordinate meetings
between them.

Assigning a thread to each agent may feel very natural. In
practice, however, the number of agents is often much higher
than the number of cores. Performance may then be seriously hin-
dered by frequent context switches, although this overhead may be
reduced by sharing a pool of threads among agents. However, this
model still involves intensive communication and costly proces-
sor cache synchronization. In consequence, the trade-off for such
concurrency may not be worthwhile.

3.2.2. Lightweight agents
An opposite approach is to consider agents as parts of the model,

but not parts of the implementation. As such, they are simply rep-
resented as data structures and processed like in a discrete event
simulation.

The execution of an individual agent has to be divided into
smaller parts which can be interleaved. These parts, which we
will call actions, could for example consist of moving to differ-
ent location or meeting a neighbour. Given its current state, every
agent decides which action to perform next (function behaviour/1 in
Listing 3). Then the agents are grouped by the selected action (func-
tion group by behaviour/1) and the actions are performed on pairs
or individual agents (function meeting/1). Finally the new popula-
tion is shuffled to change the order of agents before next iteration
of the algorithm. All of these four consequential steps are presented
in the Listing 3.

The performance of such a model will usually be higher than in
the previous one, as more consistent memory access patterns result
in more efficient processor usage. Even though the explicit paral-
lelism is reduced, throughput can be improved, because frequent
agent interactions no longer need to be synchronized between
threads.

Fig. 3. The architecture of the platform.

Moreover, independent actions can still be executed in parallel
by the executor service. This is consistent with the meeting arena
concept described above, as actions on common subsets of agents
may be grouped together and considered as a single meeting.

4. Framework architecture and EMAS implementation

The platform is thus divided into two layers: the multi-agent
application and the execution environment (Fig. 3). The application
layer abstracts from the execution and focus on the interactions. It
defines

• the types of agents
• their possible states and actions
• the behaviour function mapping states to actions
• the meetings function updating agents subpopulation for a given

action.

The execution environment implements the logic of computing
of these functions (realizing them in the form of one of the described
below execution models) and tying their results together to run
the simulations. Several versions of execution models are described
below, but they all expose the same API, accepting the types and
functions defined at the application layer.

This decoupling allows to design the multi-agent algorithm sep-
arately and later choose and tune the execution model to best fit a
given problem or hardware configuration.

A broker module is responsible for handling agent migrations
between environments, independently of their underlying execu-
tion environment. Although this is outside the scope of this paper,
the same mechanism also allows the application to handling cross-
node migrations in a distributed environment.

3.3. Execution model based on actors 57

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

W. Turek et al. / Journal of Computational Science 17 (2016) 234–248 239

Listing 3. The behaviour and meeting functions are applied to derive the next agent population.

Fig. 4. Outline of the sequential version of EMAS.

The last module is responsible for gathering statistics and
metrics from the running application. Several mechanisms are
available for different levels of concurrency. In particular, a spe-
cial support is provided for statistics that are monotonic, such as
the number of agents meetings or the best fitness found so far.
Such statistics can be computed at any time and recorded asyn-
chronously. They can be periodically flattened to yield the value of
the statistic at a given time, with minimal synchronization between
sources.

As described in Section 3.2, choosing an appropriate execu-
tion model for agent interactions is crucial to achieve efficient
parallelism in multi-agent systems. Such execution models may
differ in terms of granularity and other characteristics, in par-
ticular their efficiency for a given application. Decoupling agent
behaviour and meetings from the interaction mechanism [33]
allows to swap different execution models and compare their
performance.

We have designed three different implementations of agent
interactions based on our previous experiences gathered dur-
ing implementation of different types of agent-based computing
frameworks:

• hybrid (coarse-grained), following our approach to implement
the system as a number of processes working in parallel, commu-
nicating among themselves and running the real computing and
agent-related tasks inside these processes, following so-called
discrete event simulation [46] in order to simplify the interac-
tions among the agents, improving the efficiency and scalability
of the whole system,

• concurrent (fine-grained), prepared in order to test the well-
known Erlang (and Scala – in another paper [20]) capability to run
and communicate immense numbers of lightweight processes,

• SKEL-based (also coarse-grained, based on the SKEL [47] library8),
in order to test the applicability of the parallel-patterns included
there,

• sequential version, implemented for comparison purposes.

8 SKEL is one of the products of EC FP7 ParaPhrase Project, contract no. 288570,
http://paraphrase-ict.eu/.

4.1. Sequential

The sequential version is very simple: it repeatedly applies
the behaviour and meeting functions to update the population of
agents (Listing 3). Additionally, several such agent populations are
kept and in every step agents may migrate between them with low
probability. All the populations are then wrapped in a recursive
loop within a single Erlang process until some stop criterion is met.

Fig. 4 presents the outline of the sequential implementation.
Single Erlang process iterates over the collection of islands. Within
each island, solutions are grouped by energy value into three
groups: the agents to remove, fight and reproduce. Additionally,
a group of agents for migration is selected with low probability
from the last two groups. In following steps, the process performs
migration (moves the solutions to another agents collection) and
meetings between agents. Operation of fighting results in equinu-
merous set of agents, reproduction causes growth in the number of
agents. New solutions are evaluated during this process, which is
the most computationally-expensive operation of the whole pro-
cess.

4.2. Hybrid

The hybrid version is the most straightforward way to paral-
lelize the simplest sequential version. Every agent population is
contained in a separate Erlang process and runs in an independent
loop. The outline of this implementation is presented in Fig. 5.

Agent migration is realized through message passing. A sin-
gle, separate process acts as a migration broker and is responsible
for forwarding migrating agents according to some topology. In
practice, the migration probability is very low (typically a few
migrations every second), so this single process does not become a
bottleneck but simplifies communication.

4.3. Skeletons

The SKEL-based implementation is the result of refactoring the
sequential version by introducing skeletons from the SKEL library.
These skeletons are used to emulate loops and parallel patterns in
the code. The outline of this implementation is presented in Fig. 6.

58 3.3. Execution model based on actors

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

240 W. Turek et al. / Journal of Computational Science 17 (2016) 234–248

Fig. 5. Outline of the hybrid version of EMAS.

Fig. 6. Outline of the SKEL version of EMAS.

Agent populations are parallelized with the map skeleton and
each island operates within a loop. This loop is implemented with
a feedback pattern, which basically emulates the classic while
instruction i.e. repeats its content whilst a certain condition holds
true. While the rest of the logic is implemented with skeletons,
asynchronous migration had to be written separately. Agents are
exchanged between islands through an ETS – Erlang term storage
– a shared memory space, which is fast and threadsafe.

The codebase of this implementation is smaller while the final
performance is almost as good as in the hybrid model. Also, the
structure of the parallel workflow can be easily changed. On the
other hand, this structure highly influences the performance, so we
had to experiment with several versions until good performance
was achieved.

4.4. Concurrent

The concurrent version represents an approach where every
agent runs in a separate autonomous Erlang process. As they
lack global knowledge, agents only interact through the mediating
meeting arenas. In these models the arenas become distinguished
entities. They are implemented as Erlang processes (gen servers)
constant for each island. There is a separate arena responsible for
each kind of interaction: fight, reproduction, death and migration.
The outline of this implementation is presented in Fig. 7.

When agents decide to carry out a certain action e.g. repro-
duce, they send a message to an appropriate arena. The arena pairs
such incoming agents, calculates the interaction and sends back its
results. This approach allows to keep very lightweight agents and
removes all synchronization barriers from the algorithm, at the cost
of more expensive communication.

Every agent population has a separate set of arenas. Migrating
an agent is as simple as changing the PIDs of the arenas it commu-
nicates with.

5. Scalability of the platform applied for benchmark
continuous optimization

In this section, the scalability issues encountered during opti-
mization of the framework applied for continuous optimization are
discussed.

All the versions of the algorithm described in the previous
section have been carefully tested to evaluate their performance,
scalability and compare with each other. To our surprise, initial
implementations off all of them did not scale well for large numbers
of CPU cores.

The performance metric recorded in our experiments is the
number of agent reproductions happening every second. Our pre-
vious research [48] indicated that this value is proportional to the
amount of all other events in the system and thus is a good indica-
tion of the system’s overall throughput. We do not present results of
fitness value along time, as these are dependent mostly on the prob-
lem definition and genetic operators implementation and therefore
do not represent the scalability of the platform.

We ran our experiments on the ZEUS supercomputer provided
by the Pl-Grid9 infrastructure at the ACC Cyfronet AGH.10 We used
nodes with 4 AMD Opteron 6276 processors each (64 cores per
node) and a total of 256 GB of memory per node.

For every experiment, we started the computations and let
the system reach a steady state. Then, we recorded throughput
during several minutes. This procedure was repeated 30 times to
account for operating system variability or dependence on random
number generator seed. Finally, these throughput were averaged
over time and experiments for a given configuration. We do not
provide complete statistical measures because the results were
highly repeatable.

9 http://www.plgrid.pl/en.
10 http://www.cyfronet.krakow.pl/en/.

3.3. Execution model based on actors 59

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

W. Turek et al. / Journal of Computational Science 17 (2016) 234–248 241

Fig. 7. Outline of the concurrent version of EMAS.

The particular problem considered in the experiments was
finding the 100 dimensional Rastrigin function minimum. Config-
uration of the genetic algorithm in all experiments included 64
evolutionary islands with initial number of agents on each island
equal to 100. Initial energy of a new agent (initial or offspring) was
10, while the threshold for performing reproduction was 11, which
forced each created agent to win a fight before mating. Operation
of fighting transferred at most 10 points of energy. The chance to
mutate an offspring was set to 0.75, the mutation influenced 10%
of genome within the range of 5%.

Optimizing the Rastrigin benchmark function [49] is a compu-
tationally intensive task. By varying the dimension of the problem,
we can choose appropriate computation to communication ratios
to identify scalability problems related with communication.

Our initial implementations were not very scalable, as through-
put for all the variants increased only up to around 8 cores. Above
this threshold, only the hybrid version further improved (Fig. 8).

It was not easy to profile the code and look for bottlenecks, as
most of common Erlang profiling tools are not designed for HPC
programs. We managed to monitor the schedulers’ load which was
constantly 100% and employed popular Erlang profiling tools for
this task. We used eprof and fprof, which are the main profiling
tools shipped with Erlang. The main difference between them is the
amount of information they provide and the overhead introduced
to the programme, fprof is much more significant in both of these
traits. We also tried percept2, which is a third-party library very
popular in the Erlang community. It provides typical profiling infor-
mation with additional visualizations that make it stand out from
the competition. All of those tools showed nothing peculiar in the
behaviour of our system and focused on the distribution of compu-
tation time between function and different processes.

We also used the lcnt11 tool. This library provides functions
to monitor lock contention in the virtual machine and provides
valuable information concerning the number of collisions and time
spent on each lock.

After running our application with lock monitoring enabled, we
discovered that the concurrent model suffers from extensive usage
of the make ref/0 function. In Erlang, this function is responsible
for generating a globally unique identifier and has to be synchro-
nized between schedulers. It is also used by the gen server:call/2
function, which was used extensively in our programme. In the
concurrent model, arenas have been implemented as gen server
behaviours, which use the gen server:call/2 function to perform
bidirectional communication. Therefore, every time agent-arena
communication occurred, the make ref/0 function had to be called,
which resulted in a big performance loss. Changing communication
to use the gen server:cast/2 (unidirectional calls) function proved
essential to good scalability.

11 http://www.erlang.org/doc/man/lcnt.html.

Another significant change was the introduction of the
exometer12 library as a global logging system. Thanks to its built-
in counters, we managed to lighten the arenas. However, statistics
gathering was very difficult due to the distributed and decentral-
ized nature of our algorithm. After several approaches, we decided
to use Erlang NIF functions. The native implemented functions (NIF)
in Erlang are one of a few ways to introduce C code into an Erlang
application. They look like any other function to the caller, however
they can be implemented in C enabling significant speed improve-
ments. After employing them for fitness logging we experienced a
performance boost and no additional scaling overhead.

The performance improvement of the concurrent version after
changes in communication and logging is shown in Fig. 9.

However, no locks were observed in the skel model. Therefore,
we experimented with the skeleton structure in order to increase
performance. The main challenge was related to agent migrations
– it was impossible to implement them through message pass-
ing, because skel processes are transparent for the programmer
and it is difficult to get their PIDs. Our first approach consisted of
adding a synchronization barrier between islands and performing
synchronized migrations after each algorithm iteration (Listing 4).
This simple solution proved to be not scalable, as the synchronous
migration become a bottleneck and slowed down the computation
significantly.

In order to solve this problem, we implemented migration sep-
arately using ETS tables and removed the synchronization point. In
this approach each island iterated in its own loop and asynchronous
communication was emulated through writing and reading the ETS
tables (Listing 5). The performance improvement of the skel version
after reordering skeletons is shown in Fig. 10.

Skel patterns and workflows look very simple for the user, how-
ever underneath they involve a lot of message passing through
many different processes. In Erlang every outgoing message has
to be copied in memory, therefore sending large messages may be
computationally expensive. However, this is not the case for large
instances (more than 64 bytes) of the Erlang binary data type. Large
Erlang binaries are held in a separate space in memory and sent by
reference instead of by value. In order to further improve skel ver-
sion’s performance, we moved from a list representation of agents
to binary types. We experienced a significant performance and
scalability boost, as most of communicational overhead vanished
(Fig. 11).

Fig. 12 shows the final scalability of all three implementations.
Achieved scalability makes it possible to efficiently utilize a 64 core
CPU. These results prove that it is possible to successfully use Erlang
for computations on many-core architectures, however getting lin-
ear scalability of a particular algorithm is not straightforward.

12 http://github.com/Feuerlabs/exometer.

60 3.3. Execution model based on actors

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

242 W. Turek et al. / Journal of Computational Science 17 (2016) 234–248

Fig. 8. Throughput of initial implementations. Only the hybrid version scales to some extent.

Fig. 9. Throughput of the concurrent model after optimizing both communication and logging.

Listing 4. First approach to skel-based programme implementation. Map skeleton is nested within the Feedback skeleton imposing a barrier after every loop, but enabling
easy logging and migration.

Listing 5. New skel-based implementation logic. Here the Feedback skeleton is nested in the Map skeleton (inversely to the previous listing) removing the barrier, but
enforcing the logging and migration to be implemented differently.

6. Urban traffic management

In order to confirm the scalability features of the devel-
oped framework, a more complex, real-life problem has been
considered. The computing framework has been applied for opti-
mizing traffic on a simulated urban crossroad. This use case was
selected as being a much more practical one than popular and
acclaimed, yet quite artificial benchmark functions. Moreover, this
problem employs a data-intensive fitness function, again, con-
trary to a very simple-to-compute Rastrigin function (or similar
benchmarks).

Traffic affects all people living in crowded cities, but despite
many years of research in this area, most of crossroads are still
controlled by simple sequence-based traffic lights. The nature of
the problem makes it very hard to be solved both safely and effi-
ciently. Efficient coordination of motion for tens of cars requires
complex computations, while high dynamics puts very strong con-
straints on computations time and robustness. Moreover, the plans
created are never executed accurately, therefore some uncertainty
must be explicitly accounted for in the planning algorithm. These
factors make the classic, domain independent planning methods
[35] unsuitable.

3.3. Execution model based on actors 61

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

W. Turek et al. / Journal of Computational Science 17 (2016) 234–248 243

Fig. 10. Throughput of the skel model depending on skeleton structure and agent migration approach: synchronization barrier (synchronous) or ETS tables (asynchronous).

Fig. 11. Performance boost of the skel version after changing agent representation from list (sent by value) to binaries (sent by reference).

Unpredictable changes in the problem parameters can be
addressed with approaches defined as planning under uncertainty.
The methods assume that a planner does not have complete knowl-
edge required to calculate a plan or the knowledge is uncertain.

The solutions to this class of problems have to address an issue of
uncertainty modeling [50]. An interesting example of a solution for
mobile robot motion planning is presented in [51]. The planning
algorithm handles sensing and motion uncertainty and optimizes

Fig. 12. Performance after all optimizations.

62 3.3. Execution model based on actors

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

244 W. Turek et al. / Journal of Computational Science 17 (2016) 234–248

Fig. 13. Three steps of a plan for two lanes crossing.

motion plan with the complexity of O[n6] in a search space of n
dimensions. Such methods cannot be applied for real-time motion
planning when a group of independent vehicles is considered.

The problems of managing entity groups under uncertainty
are also receiving attention, especially in the domain of mobile
robotics. Tasks like formation control [52] or motion coordination
[53] require robust planning and execution methods. In order to
guarantee safety, the solutions tend to simplify the planning algo-
rithm or apply behavioural controllers, which can respond quickly
in case of an unexpected execution error. This trade off between
robustness and optimality of solutions cannot be overcome as long
as the plan is prepared on-demand, when the unexpected situation
has already occurred.

Planning in dynamic environments is also studied in the case
of scheduling problems, e.g. Job Shop and similar ones, where it is
necessary to receive new, unplanned jobs in certain time periods,
and/or deal with potential machinery breakdowns. Such approach
was usually called a rolling horizon procedure where a rolling
time window is introduced and newly arriving jobs are included
in the prediction window. Based on the predictions, schedules are
prepared (sub-problems of the Job Shop Scheduling Problem are
solved) and final schedule is integrated in the current global solu-
tions [54,55]. In these cases, a shifting bottleneck heuristic is used
for scheduling and rescheduling [56]. Such heuristics are of course
very useful, and usually good-enough for the manual solving of
such problems, but in the approach presented here, we would like
rather to use a general-purpose evolutionary algorithms (in partic-
ular EMAS) to schedule the JSSP, however none of other possible
heuristics are excluded and they may be considered in the future.

6.1. Evolutionary crossroads lights management

Traffic management and in particular crossroads lights man-
agement problem can be defined as optimization one, and its high
level of complexity and potential difficulty of solving (because of its
highly dynamic nature) may be approached with general purpose
metaheuristics, as evolutionary algorithms. In the case described
here, traffic management of certain crossroads is encoded into
the fitness function and optimized using EMAS. This is a first step
towards further introduction of predictive multi-variant planning
that will be one of our future work issues (preparing plans before
they are needed, based on certain features of the earlier observed
traffic, its participants, environmental conditions, etc.).

In the described case, we assume discrete time and space and
we use simplified cars motion model. Each car occupies a singe cell
of a road lane and in each time step, it moves to the succeeding
cell if the cell is empty. A controlling element is located in the cells
where two lanes cross. It can block one lane and enable the other.
The plan for controlling the whole crossroad in a single time-step is
a set of decisions concerning the controlling elements. The plan for
controlling the whole crossroad for a period of time is a sequence
of single-step plans. Three steps of a plan executed in a two-lanes
crossing are shown in Fig. 13. The plan is (1, 1, 2), which means that
during the first two time-steps only cars moving on lane1 can enter

Fig. 14. The crossroad layout used in the experiments.

the crossing. In the third time-step (situation c) the plan enables
motion of cars 3 and 4 moving on lane2, stopping car number 1.

The efficiency of the plan is calculated as the number or cells cov-
ered by all the cars. Calculating the efficiency is a relatively complex
task, which requires executing a simulation of cars according to a
particular plan. Its complexity is O(n2 * t), where n is the number of
cars and t is the number of time-steps in the plan.

The evolutionary algorithm used for optimizing the plan opera-
tes on individuals represented as

i = ((x1
1, . . ., x1

m), . . ., (xt
1, . . ., xt

m)),

where m is the number of lanes crossings to control and xj
i

∈ {1, 2}
determines which of the two lanes is blocked in the particular
time-step. Each individual is therefore a sequence of m * t bits,
which makes variation operators definition straightforward. We
use single-point crossover operation and bit-flip mutation. Each
variation operator generates one or two new individuals (new
plans) which must be evaluated. Multiple variants of possible future
situations on the crossroad can be handled using more complex
plan evaluation method. Assuming that each car can fail to reach
desired location on time, we can generate several possible variants
of the situation on the crossroad. Then, the evaluation of a plan
must involve calculating the efficiency of the plan in all v variants
of situation, increasing the complexity to O(n2 ∗ t ∗ v). The total fit-
ness should be calculated as a sum of fitness values for all variants.
This approach promotes more universal plans, which do not cause
significant loss of efficiency when slight differences in the situation
occur.

6.2. Scaling the memory-intensive operations

The optimized version of the Erlang computing framework,
presented in Section 5, has been applied to the presented traf-
fic planning problem. We used a single crossroad setup, which
consisted of four lanes with four independent lane crossings, as pre-
sented in Fig. 14. The incoming lanes length was adjusted according
to the number of cars, which varied from 10 to 100. Fitness value
was calculated as the total number of steps covered by all the cars
after 20 time-steps of the plan.

The main difference from the previous use-case is the memory-
intensive fitness function. Every fitness evaluation requires
performing a entire traffic simulation, which involves intensive
memory manipulation. This observation makes the choice of an
appropriate data structure very important. Different Erlang built-
in data structures can have a crucial influence on the programme
scalability and performance.

Erlang ships with several types of key-value stores, the main
ones are: dicts, gb trees, ETS tables and proplists. The first two
are typical general-purpose key-value data structures differing

3.3. Execution model based on actors 63

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

W. Turek et al. / Journal of Computational Science 17 (2016) 234–248 245

Fig. 15. Performance of different data structures in traffic simulation using the concurrent model.

Fig. 16. Fitness convergence for different problem sizes during first 10 s.

in implementation: dicts use a hash table and gb trees General
Balanced Trees [57]. ETS tables, on the other hand, are fast and
thread-safe structures for storing large quantities of data and pro-
plists are just standard Erlang lists which are fast and lightweight,
but with linear access time. Our initial approach used dicts as a
major container for the simulation data, however we observed very
poor performance and scalability.

The hardware setup and the evolutionary algorithm config-
uration was exactly the same as in case of Rastrigin function
optimization described before. Each configuration has been exe-
cuted 30 times for a time of 3 min in order to obtain statistical
significance. Fig. 15 compares the efficiency (median value) of dif-
ferent data structures.

Surprisingly, Erlang proplists are clearly the fastest solution for
the use case. The reason might be that the structure itself is fairly
small (one element per car, not more than 100), therefore the hash-
ing functions used in other data structures are computationally
more expensive than iterating over a small list. Another explanation
could be that the smaller size and more predictable memory pattern
of this data structure makes it more cache-friendly on multi-core

hardware. It is also worth noting that ETS performed slightly better
than dicts, but significantly worse than gb trees. Only proplists and
gb trees allow linear scalability of the algorithm on a many-core
architecture.

6.3. Traffic management results

We have carried out tests to evaluate the speed and conver-
gence of fitness for this particular usecase. The application of the
algorithm in the problem of traffic management requires provid-
ing good solutions within specified time, therefore the performance
improvements are crucial. Median of fitness convergence for differ-
ent problem sizes computed on 64 cores is shown in Fig. 16.

The results show, that the method converges very fast, reaching
stable solutions after 1–3 s, depending on problem size. The quality
of found solutions is compared to the results of the fixed-cycles
approach in Table 1.

The system managed to calculate solutions better by 8–34%,
which is definitely a significant improvement of traffic effi-
ciency. More complex crossroads with several lanes could probably

64 3.3. Execution model based on actors

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

246 W. Turek et al. / Journal of Computational Science 17 (2016) 234–248

Table 1
Comparison of traffic efficiency with fixed-cycles approach (traffic lights) and the evolutionary traffic management.

Number of cars: 10 20 30 40 50 60 70 80 90 100

Cycle each step 25 126 194 313 480 787 962 1047 1100 1347
Cycle of 2 steps 25 112 194 396 522 753 962 1047 1164 1364
Cycle of 5 steps 32 98 194 371 501 774 845 1025 1126 1347
Plan after 3 s (median of 30 runs) 42 138 260 456 612 852 1043 1262.5 1367 1626.5
Plan after 3 s (standard deviation) 0.00 0.00 1.27 2.58 2.77 3.36 3.46 3.02 11.40 8.03
Percentage of improvement over best cycle approach 31.25 9.52 34.02 15.15 17.24 8.26 8.42 20.58 17.44 19.24

benefit even more. Presented results constitute a good basis for
further research on optimization-based traffic planning, which will
require solving problems of representing more realistic motion and
control models.

7. Conclusions

Metaheuristics, especially general-purpose ones are crucial
methods for solving hard optimization problems. Agent-based
metaheuristics turned out to be an effective tool for dealing with
such problems, therefore looking for efficient ways of imple-
menting of agent-oriented frameworks becomes an important
endeavour. Moreover, in the era of multi-core and many-core archi-
tectures, leveraging functional approach and scalable techniques
may lead to reaching efficient, easy to use tools that can be adapted
to many computing techniques and problems.

Erlang technology is frequently used for building large-scale sys-
tems successfully utilizing clusters of computers and multi-core
processors in a reliable setting with very small maintenance over-
head. However, the most ambitious (industrial) deployments of
Erlang applications utilize 24 CPU cores, and even the creators of
Erlang do not test the EVM on architectures consisting of more
than 32 cores. Some academic research conducted shows results
of scaling Erlang up to 64 cores and beyond (using e.g. Intel Xeon
Phi architecture), but these reports are based mostly on low-level
technology-oriented benchmarks.

Looking for new applications of the Erlang-based frameworks
(like parallel computing), encourages to undertake new challenges
to efficiently utilize existing supercomputing hardware – thus the
approach to efficiently scale such a framework on 64 CPU core
machine.

In this paper we presented the initial assumptions regarding
the structure and the behaviour of the implemented system
(population-based agent-oriented computing framework) pointing
out the potential scalability problems and devising three versions
of the framework. The procedure of profiling and refactoring led us
to good scalability, beyond the acclaimed 24 CPUs. Starting from
good scalability only on 8 CPU cores, the search for bottlenecks,
monitoring of schedulers’ load with predefined tools and search
for locks in the running code were performed. As a result of this
research, the existing framework was appropriately modified, and
eventually the assumed scalability was reached. The performance
was verified on both benchmark Rastrigin function and a real-life
traffic optimization problem.

The main conclusion of the presented work is that it is pos-
sible to implement a computationally intensive applications in
Erlang, which scales up to 64 cores, however, achieving this is
not a straightforward process. We are convinced, that our expe-
rience gathered in the course of this research may be utilized
by other researchers and developers preparing highly scalable
computation-intensive frameworks or applications based on the
Erlang technology. In the future we plan to extend our knowledge
by coping with computing in a heterogeneous hardware environ-
ment using the available computing frameworks.

The comparison of our framework and the achieved results using
Erlang to other frameworks found in the literature is quite difficult

as other frameworks are usually implemented having other goals:
e.g. management of the computing process, instead of realization
of the computing itself. One good comparison would be to cite the
results achieved by us in the case of other technologies: namely we
are in the course of implementing of similar frameworks in Scala
and Haskell, and they currently scale linearly up to 12 cores.

In the future, from the technological point of view, we are
planning to try to further scale our platform using Intel Xeon Phi
architecture (preliminary runs allowed to achieve almost linear
scalability up to 244 cores), and from the substantial point of view,
we are going to further explore the multi-variant planning prob-
lem, treating the results presented in this paper as a good basis and
encouragement for its efficient implementations.

Acknowledgements

The research presented in the paper was conducted using
PL-Grid Infrastructure (http://www.plgrid.pl/en). The research pre-
sented in the paper has received founding from the Polish
National Science Centre under grant DEC-2011/01/D/ST6/06146.
The authors would like to express heartfelt gratitude to a member
of the OTP team, Lukas Larsson, for his advices on profiling Erlang
code.

References

[1] K. Cetnarowicz, M. Kisiel-Dorohinicki, E. Nawarecki, The application of
evolution process in multi-agent world (MAW) to the prediction system, in:
M. Tokoro (Ed.), Proc. of the 2nd Int. Conf. on Multi-Agent Systems
(ICMAS’96), AAAI Press, 1996.

[2] A. Byrski, M. Kisiel-Dorohinicki, E. Nawarecki, Agent-based evolution of
neural network architecture, in: M. Hamza (Ed.), Proc. of the IASTED Int.
Symp.: Applied Informatics, IASTED/ACTA Press, 2002.

[3] G. Dobrowolski, M. Kisiel-Dorohinicki, E. Nawarecki, Some approach to design
and realisation of mass multi-agent systems, in: R. Schaefer, S. Sedziwy (Eds.),
Advances in Multi-Agent Systems, Jagiellonian University, 2001.

[4] M. Kisiel-Dorohinicki, G. Dobrowolski, E. Nawarecki, Agent Populations as
Computational Intelligence, in: Neural Networks and Soft Computing:
Proceedings of the Sixth International Conference on Neural Networks and
Soft Computing, Zakopane, Poland, June 11–15, 2002, Physica-Verlag HD,
Heidelberg, 2003, pp. 608–613.

[5] A. Byrski, R. Schaefer, M. Smołka, Asymptotic guarantee of success for
multi-agent memetic systems, Bull. Pol. Acad. Sci. – Tech. Sci. 61 (1) (2013).

[6] L. Siwik, R. Dreżewski, Agent-based multi-objective evolutionary algorithms
with cultural and immunological mechanisms, in: W.P. dos Santos (Ed.),
Evolutionary Computation, In-Teh, 2009, pp. 541–556.

[7] A. Byrski, M. Kisiel-Dorohinicki, Immunological selection mechanism in
agent-based evolutionary computation, in: M.A. Klopotek, S.T. Wierzchon, K.
Trojanowski (Eds.), Intelligent Information Processing and Web Mining:
Proceedings of the International IIS: IIPWM’ 05 Conference, Gdansk, Poland,
Advances in Soft Computing, Springer Verlag, 2005, pp. 411–415.

[8] K. Wróbel, P. Torba, M. Paszyński, A. Byrski, Evolutionary multi-agent
computing in inverse problems, Comput. Sci. 14 (3) (2013) 367 https://
journals.agh.edu.pl/csci/article/view/67.

[9] A. Byrski, Tuning of agent-based computing, Comput. Sci. 14 (3) (2013) 491
https://journals.agh.edu.pl/csci/article/view/91.

[10] J. Jeffers, J. Reinders, Intel Xeon Phi Coprocessor High-Performance
Programming, Elsevier Science, 2013.

[11] A. Varghese, B. Edwards, G. Mitra, A. Rendell, Programming the adapteva
epiphany 64-core network-on-chip coprocessor, in: Parallel Distributed
Processing Symposium Workshops (IPDPSW), 2014 IEEE International, 2014,
pp. 984–992.

[12] EZchipSemiconductor, Highest core-count arm processor optimized for high
performance networking applications, http://www.tilera.com/products/
?ezchip=585&spage=686 (04 2015).

3.3. Execution model based on actors 65

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

W. Turek et al. / Journal of Computational Science 17 (2016) 234–248 247

[13] J. Armstrong, Programming Erlang: Software for a Concurrent World,
Pragmatic Bookshelf, 2013.

[14] W. Turek, Erlang as a high performance software agent platform, Adv.
Methods Technol. Agent Multi-Agent Syst. 252 (2013) 21.

[15] F. Bellifemine, A. Poggi, G. Rimassa, JADE: A FIPA2000 compliant agent
development environment, in: Proceedings of the Fifth International
Conference on Autonomous Agents, AGENTS’ 01, ACM, New York, NY, USA,
2001, pp. 216–217, http://dx.doi.org/10.1145/375735.376120.

[16] A. Pokahr, L. Braubach, W. Lamersdorf, Jadex: Implementing a
BDI-infrastructure for JADE agents, EXP – Search Innov. (Special Issue on
JADE) 3 (1) (2003) 76–85.

[17] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, G. Balan, Mason: a multiagent
simulation environment, Simulation 81 (7) (2005) 517–527, http://dx.doi.org/
10.1177/0037549705058073.

[18] M. North, N. Collier, J. Ozik, E. Tatara, C. Macal, M. Bragen, P. Sydelko, Complex
adaptive systems modeling with repast simphony, Complex Adapt. Syst.
Model. 1 (1) (2013) 3, http://dx.doi.org/10.1186/2194-3206-1-3 http://www.
casmodeling.com/content/1/1/3.

[19] K. Pietak, M. Kisiel-Dorohinicki, Agent-based framework facilitating
component-based implementation of distributed computational intelligence
systems, in: Transactions on Computational Collective Intelligence X, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 31–44.

[20] D. Krzywicki, W. Turek, A. Byrski, M. Kisiel-Dorohinicki, Massively concurrent
agent-based evolutionary computing, J. Comput. Sci. 11 (2015) 153–162,
http://dx.doi.org/10.1016/j.jocs.2015.07.003 http://www.sciencedirect.com/
science/article/pii/S1877750315300041.

[21] M. Kazirod, W. Korczynski, A. Byrski, Agent-oriented computing platform in
python, in: 2014 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 3, 2014, pp.
365–372, http://dx.doi.org/10.1109/WI-IAT.2014.190.

[22] O. Gutknecht, J. Ferber, Madkit: a generic multi-agent platform, in:
Proceedings of the Fourth International Conference on Autonomous Agents,
AGENTS’ 00, ACM, New York, NY, USA, 2000, pp. 78–79, http://dx.doi.org/10.
1145/336595.337048.

[23] S. Cahon, N. Melab, E.-G. Talbi, Paradiseo: a framework for the reusable design
of parallel and distributed metaheuristics, J. Heuristics 10 (3) (2004) 357–380.

[24] Agent-based parallel computing in java proof of concept, Tech. Rep.
TR-UNL-CSE-2001-1004, University of Nebraska–Lincoln, 2001.

[25] F. Cicirelli, L. Nigro, An agent framework for high performance simulations
over multi-core clusters, in: AsiaSim 2013: 13th International Conference on
Systems Simulation, Singapore, November 6–8, 2013, Proceedings, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 49–60.

[26] B. Cosenza, G. Cordasco, R. De Chiara, V. Scarano, Distributed load balancing
for parallel agent-based simulations, in: 19th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP),
2011, 2011, pp. 62–69.

[27] S. Cahon, E. Talbi, N. Melab, Paradiseo: a framework for parallel and
distributed biologically inspired heuristics, in: in: Parallel and Distributed
Processing Symposium, 2003. Proceedings, 2003, p. 9.

[28] D. Thomas, Functional programming-crossing the chasm? J. Object Technol. 8
(5) (2009) 45–48.

[29] F. Cesarini, S. Thompson, Erlang Programming, O’Reilly Media, Inc., 2009.
[30] S. Aronis, N. Papaspyrou, K. Roukounaki, K. Sagonas, Y. Tsiouris, I.E. Venetis, A

scalability benchmark suite for Erlang/otp, in: Proceedings of the Eleventh
ACM SIGPLAN Workshop on Erlang Workshop, Erlang’ 12, ACM, New York,
NY, USA, 2012, pp. 33–42, http://dx.doi.org/10.1145/2364489.2364495.

[31] K. Sagonas, K. Winblad, More scalable ordered set for ETS using adaptation,
in: Proceedings of the Thirteenth ACM SIGPLAN Workshop on Erlang, Erlang’
14, ACM, New York, NY, USA, 2014, pp. 3–11, http://dx.doi.org/10.1145/
2633448.2633455.

[32] S. Zheng, X. Long, J. Yang, Using many-core coprocessor to boost up Erlang
VM, in: Proceedings of the Twelfth ACM SIGPLAN Workshop on Erlang,
Erlang’ 13, ACM, New York, NY, USA, 2013, pp. 3–14, http://dx.doi.org/10.
1145/2505305.2505307.

[33] D. Krzywicki, L. Faber, A. Byrski, M. Kisiel-Dorohinicki, Computing agents for
decision support systems, Future Gener. Comp. Syst. 37 (2014) 390–400.

[34] E. Cantú-Paz, A survey of parallel genetic algorithms, Calculateurs Paralleles,
Reseaux et Systems Repartis 10 (2) (1998) 141–171.

[35] S. Russel, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall,
2003.

[36] R. Sarker, T. Ray, Agent-Based Evolutionary Search, 1st Edition, vol. 5 of
Adaptation, Learning and Optimization, Springer, 2010.

[37] S.-H. Chen, Y. Kambayashi, H. Sato, Multi-Agent Applications with
Evolutionary Computation and Biologically Inspired Technologies, IGI Global,
2011.

[38] P. Uhruski, M. Grochowski, R. Schaefer, Multi-agent computing system in a
heterogeneous network, in: Proceedings of the International Conference on
Parallel Computing in Electrical Engineering (PARELEC 2002), IEEE Computer
Society Press, Warsaw, Poland, 2002, pp. 233–238.

[39] J. Liu, Y. Tang, Y. Cao, An evolutionary autonomous agents approach to image
feature extraction, IEEE Trans. Evol. Comput. 1 (2) (1997) 141–158, http://dx.
doi.org/10.1109/4235.687881.

[40] J. Liu, H. Jing, Y. Tang, Multi-agent oriented constraint satisfaction, Artif. Intell.
136 (1) (2002) 101–144, http://dx.doi.org/10.1016/S0004-3702(01)00174-6
http://www.sciencedirect.com/science/article/pii/S0004370201001746.

[41] E. Alba, B. Dorronsoro, Cellular Genetic Algorithms, Springer, 2008.

[42] M. Garca-Valdez, J. Guervs, F. Fernndez de Vega, Unreliable heterogeneous
workers in a pool-based evolutionary algorithm, in: A.I. Esparcia-Alczar, A.M.
Mora (Eds.), Applications of Evolutionary Computation, vol. 8602 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 2014, pp. 726–737.

[43] J. Jimnez Laredo, D. Lombraa Gonzlez, F. Fernndez de Vega, M. Garca Arenas, J.
Merelo Guervs, A peer-to-peer approach to genetic programming, in: S. Silva,
J. Foster, M. Nicolau, P. Machado, M. Giacobini (Eds.), Genetic Programming,
vol. 6621 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2011, pp. 108–117.

[44] A. Byrski, R. Drezewski, L. Siwik, M. Kisiel-Dorohinicki, Evolutionary
multi-agent systems, Knowl. Eng. Rev. 30 (2015) 171–186.

[45] A. Byrski, R. Schaefer, Formal model for agent-based asynchronous
evolutionary computation, in: IEEE Congress on Evolutionary Computation,
2009. CEC’ 09, 2009, pp. 78–85, http://dx.doi.org/10.1109/CEC.2009.4982933.

[46] J. Banks, J. Carson, B. Nelson, D. Nicol, Discrete-Event System Simulation,
Prentice Hall, 2005.

[47] V. Janjic, A. Barwell, K. Hammond, Using Erlang skeletons to parallelise
realistic medium-scale parallel programs, in: Proceedings of the Workshop on
High-Level Programming for Heterogeneous and Hierarchical Parallel
Systems.

[48] D. Krzywicki, J. Stypka, P. Anielski, W. Turek, A. Byrski, M. Kisiel-Dorohinicki,
et al., Generation-free agent-based evolutionary computing, Procedia
Comput. Sci. 29 (2014) 1068–1077.

[49] J. Digalakis, K. Margaritis, An experimental study of benchmarking functions
for evolutionary algorithms, Int. J. Comput. Math. 79 (4) (2002) 403–416.

[50] J. Mula, R. Poler, J. Garcí a-Sabater, F. Lario, Models for production planning
under uncertainty: a review, Int. J. Prod. Econ. 103 (1) (2006) 271–285.

[51] J. Van Den Berg, S. Patil, R. Alterovitz, Motion planning under uncertainty
using iterative local optimization in belief space, Int. J. Robot. Res. 31 (11)
(2012) 1263–1278.

[52] T. Balch, C. Arkin, Behavior-based formation control for multi-robot teams, in:
IEEE Transactions on Robotics and Automation, 1997, pp. 926–939.

[53] W. Turek, K. Cetnarowicz, W. Zaborowski, Software agent systems for
improving performance of multi-robot groups, Fundam. Inf. 112 (1) (2011)
103–117.

[54] J. Fang, Y. Xi, A rolling horizon job shop rescheduling strategy in the dynamic
environment, Int. J. Adv. Manuf. Technol. 13 (3) (1997) 227–232.

[55] B. Wang, Q. Li, Rolling horizon procedure for large-scale job-shop scheduling
problems, in: IEEE International Conference on Automation and Logistics,
2007, 2007, pp. 829–834, http://dx.doi.org/10.1109/ICAL.2007.4338679.

[56] M. Pinedo, Planning and Scheduling in Manufacturing and Services, Springer,
2009.

[57] A. Andersson, General balanced trees, J. Algorithms 30 (1999) 1–28.

Wojciech Turek, PhD, obtained his PhD in 2010 at AGH
University of Science and Technology in Cracow. He works
in the area of multi-robot systems, multi-robot planning,
autonomous and agent-based systems, concurrent and
parallel programming, mostly in functional languages.

Jan Stypka is a MSc student at AGH University of Science
and Technology in Cracow, he is interested in parallel and
distributed programming and social networks.

Daniel Krzywicki is a PhD student at AGH University
of Science and Technology in Cracow, he is interested
in agent-based computing and parallel programming in
functional languages.

66 3.3. Execution model based on actors

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

248 W. Turek et al. / Journal of Computational Science 17 (2016) 234–248

Piotr Anielski obtained MSc in 2013 at AGH University of
Science and Technology in Cracow, he is interested in par-
allel and distributed programming mostly in functional
languages.

Kamil Pietak obtained MSc at AGH University of Science
and Technology in Cracow, he is interested in agent-based
frameworks, software engineering, DSLs and component-
based systems.

Aleksander Byrski obtained his PhD in 2007 and DSc
(habilitation) in 2013 at AGH University of Science and
Technology in Cracow. He works as an assistant profes-
sor at the Department of Computer Science of AGH-UST.
His research focuses on multi-agent systems, biologically-
inspired computing and other soft computing methods.

Marek Kisiel-Dorohinicki obtained his PhD in 2001 and
DSc (habilitation) in 2013 at AGH University of Science
and Technology in Cracow. He works as an assistant
professor at the Department of Computer Science of AGH-
UST. His research focuses on intelligent software systems,
particularly utilizing agent technology and evolutionary
algorithms, but also other soft computing techniques.

3.3. Execution model based on actors 67

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

68 3.4. Execution model based on parallel skeletons

3.4. Execution model based on parallel skeletons

The next execution model is based on parallel skeletons. Algorithmic skeletons are an approach

which consists in considering programs as a composition and parameterization of higher-order patterns.

Such patterns are called skeletons as they define structure, but need to be completed with details [30].

This approach may be summarized as an analysis of a program in order to find patterns that can be re-

placed with an alternative, more effective implementation, without changing the behavior of the program.

For example, consider a function that takes an array at an input, and transforms each element indepen-

dently to create an output array. An implementation that transforms each element in turn can be converted

into an implementation that performs all the transformations in parallel on multiple processors, without

changing the behavior of the function itself. If we consider patterns of parallelism, skeletons can be seen

as a functional approach to parallelism. Just like referential transparency allows compilers to optimize

synchronous functional code, a major topic of study on skeletons is how to use them to rewrite existing

code to introduce parallelism without changing the semantics of the program.

The implementation of the third model is thus the effect of applying this type of refactoring, or

program transformation, in the first model. Some identified patterns were replaced by parallel implemen-

tations from a skeleton library called Skel [31].

The main skeletons used in the implementation of this execution model were Feedback, Map and

Farm (Figure 3.6). A single element representing the whole population would loop through the Feedback

pattern until a stop condition is met (such as elapsed time or a number of iterations). Within the feedback,

the population is shuffled and then partitioned according to behavior using a Map skeleton. For each

partition, agents are grouped in pairs and the meetings function is applied to each pair in parallel using

the Farm skeleton. Eventually, the results of meetings and partitions are recombined to form the new

population.

Feedback Seq Map Farm MeetingsBehaviorShuffleStop
Condition

Figure 3.6. In the skeleton-based execution model, a single population is repeatedly

processed within a Feedback skeleton until a stop condition is met. At each step, the

population is shuffled and then partitioned according to the behavior function by a

Map skeleton (The Seq skeleton is just function composition). Then, every partition is

divided in groups and for each group the meeting function is computed. The meetings

are made parallel with the use of the Farm skeleton. Eventually, the results of meetings

and partitions are merged to form the new population.

The resulting model is naturally amenable to parallelism. However, a major limitation of the technol-

ogy used to implement parallel skeletons was that they were designed to process streams of independent

data (e.g. analyzing a stream of images with parallelism at different levels of abstraction). It could not be

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

3.4. Execution model based on parallel skeletons 69

used to make subsequent elements interact with each other. In our case, this severely limited the range

of skeletons which could be used, as the whole population needed to be the lone element in the flow. As

such, there is no more actual concurrency than in the synchronous model.

The following publication provides more information about the Skel library, along with the skeletons

used in this model. It also details the model’s implementation and experimental evaluation.

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Jan Stypka
Piotr Anielski
Szymon Mentel
Daniel Krzywicki
Wojciech Turek
Aleksander Byrski
Marek Kisiel-Dorohinicki

PARALLEL PATTERNS FOR AGENT-BASED
EVOLUTIONARY COMPUTING

Abstract Computing applications such as metaheuristics-based optimization can greatly

benefit from multi-core architectures available on modern supercomputers.

In this paper, we describe an easy and efficient way to implement certain

population-based algorithms (in the discussed case, multi-agent computing sys-

tem) on such runtime environments. Our solution is based on an Erlang soft-

ware library which implements dedicated parallel patterns. We provide tech-

nological details on our approach and discuss experimental results.

Keywords agent-based computing, functional programming, parallel patterns

Citation

2016/03/22; 21:40 str. 1/16

Computer Science • 17 (1) 2016 http://dx.doi.org/10.7494/csci.2016.17.1.83

Computer Science 17 (1) 2016: 83–98

83

70 3.4. Execution model based on parallel skeletons

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

1. Introduction

In the era of multi-core hardware, it is crucial to efficiently and effectively use the

possibilities offered by available computing equipment. Over the years, various tech-

niques and tools, such as MPI, have been introduced to construct distributed and

parallel systems. They were usually based on imperative and object-oriented pro-

gramming paradigms. However, it has now become clear that the intrinsic features of

functional programming provide a clear advantage in constructing parallel programs.

In multi-core environments, it is far easier to program in languages such as Erlang1

or Scala2 than in conventional, imperative languages.

In this paper, we consider a functional approach to the implementation of a spe-

cific class of computational intelligence systems. Most of the metaheuristic approaches

to solving optimization problems (like evolutionary algorithms, particle swarm opti-

mization, immunological algorithms) have potential for parallelism, as they usually

consist in processing a large number of individuals. Therefore, provided that the inter-

actions of these individuals are appropriately defined, sequential implementations can

be easily replaced with structural parallel alternatives [10]. As an example, parallel

evolutionary algorithms are based on the decomposition of a population of individuals

into so-called evolutionary islands, which are assigned to particular computing nodes.

In agent-based approaches the same happens to agents, which may be distributed

among computing nodes [8, 9].

This process seems easy from a conceptual point of view but some practical

problems often arise. For example, classical systems implemented using synchronous

communication methods (different flavours of remote procedure calls, as e.g. RMI in

Java [2]) or asynchronous ones (JMS in Java [1]) require users to design appropriate

failure protocols in order to achieve resiliency. Dedicated techniques such as load

balancing must also be employed in order to map particular parts of the system into

computing nodes, based on the nodes characteristics. Other technological problems

may be wrapped up in questions such as “who should start the computing process?”,

“who should gather the results?”, “will it become a single point of failure?”, “how to

reliably and efficiently communicate with parts of the system?”.

Another important question to be answered is “who should implement these

above-mentioned mechanisms?”. If the answer is: the system developer, another

question arises: “will the solution be reliable?” or even “should the design of a com-

puting system be focused on technical problems?”.

Fortunately, a number of dedicated software frameworks are now easily avail-

able, supporting asynchronous, reliable communication and resilience, among other

features. Moreover, technologies such as Erlang, Scala and Akka3 not only offer the

above mentioned features, but also allow to easily use available multi-core and multi-

1http://www.erlang.org/
2http://www.scala-lang.org/
3http://akka.io/

2016/03/22; 21:40 str. 2/16

84 J. Stypka, P. Anielski, S. Mentel et al.

3.4. Execution model based on parallel skeletons 71

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

processor machines. Based on such technologies, the designer and developer can truly

focus on the nature of the system, not going into excessive technical details.

Such techniques, however, often offer low-level solutions, regarding e.g. concur-

rency and parallel programming features. It is often more effective for developers

to use a high level set of parallel programming patterns in order to speed up the

development process, reduce the number of potential bugs and create more flexible

and layered implementation. This concept became the basis for the skel library, an

Erlang tool implementing a pattern-based parallel programming model [5, 7]. That

model assumes that a program can be expressed as a workflow constructed of differ-

ent patterns. The workflow is then supposed to be automatically mapped to available

hardware.

In this paper, we focus on presenting an application of the skel library, designed

for metaheuristic-based computing, developed in the course of the ParaPhrase FP7

project [15]. We first present a review of related work, along with the relevant com-

putational use-case: Evolutionary Multi-Agent System (EMAS) [8]. We also describe

different features of available agent-based computing platforms. Next, we highlight

the principles of work of the skel library, then we introduce the actual implementation

of agent-based EMAS metaheuristic [9]. Finally, we show experimental results and

discuss the scalability of our solution, along with concluding remarks.

2. Parallel and agent-based optimisation metaheuristics

Various models of parallel implementations of evolutionary algorithms have already

been proposed [10]. The standard approach (sometimes called a global paralleliza-

tion) consists in distributing selected steps of the sequential algorithm among several

processing units. Decomposition approaches are based on defining different com-

plex models such as coarse-grained and fine-grained parallel evolutionary algorithms.

There are also methods which use some combination of the models described above

(hybrid parallel evolutionary algorithms).

Agents play an important role in the integration of artificial intelligence subdis-

ciplines, which is often related to a hybrid design of modern intelligent systems [22].

In most similar applications reported in the literature (see, e.g. [23, 11] for a review),

an evolutionary algorithm is used by an agent to support the realization of some of its

tasks, often in connection with learning or reasoning, or to support the coordination

of some group activity. In other approaches, agents form a management infrastructure

for a distributed realization of an evolutionary algorithm [24].

Evolutionary multiagent systems are a hybrid meta-heuristic which combines

multiagent systems with evolutionary algorithms. The idea consists in evolving a pop-

ulation of agents to improve its t ability to solve a particular optimization prob-

lem [8, 9].

In a multi-agent system no global knowledge is available to individual agents.

Agents should remain autonomous and no central authority should be needed. There-

fore, in an evolutionary computing system, selective pressure needs to be decentral-

2016/03/22; 21:40 str. 3/16

Parallel patterns for agent-based evolutionary computing 85

72 3.4. Execution model based on parallel skeletons

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

ized, in contrast with traditional evolutionary algorithms. Using agent terminology,

we can say that selective pressure is required to emerge from peer to peer interactions

between agents instead of being globally-driven.

In EMAS, emergent selective pressure is achieved by giving agents a single non-

renewable resource called energy. Agents with high energy are more likely to repro-

duce, agents with low energy more likely to die. The algorithm is designed to transfer

energy from better to worse agents without central control.

In a basic implementation, every agent is assigned with a real-valued vector repre-

senting a potential solution to the optimization problem, along with the corresponding

fitness.

Agents start with an initial amount of energy and meet randomly. If their energy

is below a death threshold, they die. If it is above some reproduction threshold, they

reproduce and yield new agents – the genotype of the children is derived from their

parents using variation operators and some amount of energy is also inherited. If

neither of these two conditions is met, agents fight in tournaments by comparing

their fitness values resulting in better agents sapping energy from the worse ones

(Fig. 1).

agent

genotype
energy

agent

genotype
energy

agent

genotype
energy

agent

genotype
energy

agent

genotype
energyagent

genotype
energy

Environment

high energy:
reproduction

low energy:
death

evaluation
and energy transfer

A
A

immigration

A

emigration

Environment Environment

Amigrations

Figure 1. EMAS structure and principle of work.

The system is stable as the total energy remains constant, but the number of

agents may vary and adapt to the difficulty of the problem – small numbers of agents

with high energy or large numbers of agents with low energy. The number of agents

can also be dynamically changed by varying the total energy of the system.

2016/03/22; 21:40 str. 4/16

86 J. Stypka, P. Anielski, S. Mentel et al.

3.4. Execution model based on parallel skeletons 73

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

As in other evolutionary algorithms, agents can be split into separate popula-

tions. Such islands help preserve diversity by introducing allopatric speciation and

can also execute in parallel. Information is exchanged between islands through agent

migrations.

EMAS computing abilities were formally proven by constructing a detailed

Markov-chain based model and proving its ergodicity [9]. These results show that

EMAS is indeed a general optimization tool.

3. Agent-oriented frameworks for computational systems

There are several interesting agent platforms with different purposes. Some of them

focus on compliance with the FIPA standard (Foundation for Intelligent Physical

Agents), e.g. JADE [3]. Others go in the opposite direction, constructed in a more

lightweight way, being better suited for large simulations, e.g., MASON [18]. Some

of them provide a large set of built-in features like support for visualization or GIS,

e.g. Repast Simphony [19]. Considering aspects of distribution and concurrency, two

platforms will be elaborated in deep: Jadex and MaDKit.

Jadex [6] introduces a concept of “active components” — components that are

acting as providers and consumers of services and which are active entities with au-

tonomy similar to agents. They communicate with each other through service calls.

This system is a good example of a complete distributed and concurrent agent-based

platform [21].

The way in which agents in Jadex are implemented results in transparent distri-

bution and concurrency. Services may use remote asynchronous calls instead of local

ones. Each service has its own proxy that is responsible for receiving and scheduling

calls. On the technical side, remote calls use asynchronous messages between remote

management system components. They are encoded using codecs (e.g., binary, XML)

and then trasmitted through streams (using any possible transports, e.g., HTTP,

TCP). Codecs can also provide advanced functions like encryption or compression.

In MaDKit agents are organized into groups and have some defined roles. The

whole platform is centralized around the agent-group-role (AGR) model. Using it,

developers build organizations which consist of interacting groups and roles [14].

MaDKit has two important concepts that ease the introduction of distribution

and concurrency: micro-kernels and agent-based services. The former is the name of

a reduced platform core that executes only the most basic functions: control of groups

and roles, lifecycle management of agents, local messaging. More advanced functions

must be provided by agents and this is the latter concept in which agents provide the

rest of platform services, e.g., distributed message passing, migration. As a result, the

platform is extensible and flexible. Additionally, groups can span multiple platform

nodes.

The above-mentioned systems are general-purpose tools. For specific applica-

tions, efficiency improvements can be achieved by simplifying assumptions concern-

ing system granularity or communication. As such, Jadex and MADKit became

2016/03/22; 21:40 str. 5/16

Parallel patterns for agent-based evolutionary computing 87

74 3.4. Execution model based on parallel skeletons

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

an inspiration for several dedicated agent-based computing frameworks targeted at

population-based computing.

The AgE computing framework is an open-source project developed at the Intelli-

gent Information Systems Group of AGH-UST and a starting point for further con-

siderations. AgE is a framework for the development and the run-time execution of

distributed agent-based simulations and computations.

In AgE, a computation is decomposed into agents responsible for performing some

part of the algorithm. Agents are structured into a tree according to the Composite

design pattern [13]. It is assumed that all agents at the same level are being executed

in parallel. To increase performance, top level agents can be distributed amongst

different nodes along with all their children.

Agents, however, are not atomic assembly units, but they are further decom-

posed into functional units according to the Strategy design pattern [13]. Strategies

represent problem-dependent algorithmic operators and may be switched without oth-

erwise changing the implementation of the agent. Stateless strategy instances may be

shared between agents as they provide various services to agents or others strategies.

With the use of the environment, agents can communicate with their neighbours

via messages or queries. They may also ask their neighbours to perform specific

actions.

In a distributed model, agents are located in so-called workplaces, which are

assigned to computing nodes. Workplaces facilitate inter-agent communication and

migration between nodes. The workplaces may be implemented according to phase-

simulation or can be event-driven [20].

There are several AgE implementations, the most noteworthy are based on Java4,

Python5 and Erlang6.

A functional agent-based execution model is a new approach to the design of agent-

based computing frameworks [16].

In the platforms and frameworks described before, agent-based systems are usu-

ally implemented using an object-oriented or a component-based approach. As such,

their design follows the domain of the implemented problem, i.e. a number of inter-

acting individuals, embedded in an environment, being able to perceive and interact

among themselves and with the environment they are located in.

However, in the case of computing systems, a number of simplifications can lead

to simpler implementations, fully compatible with functional programming languages.

Such a functional approach allows to naturally use concurrent and distributed features

of such languages and leads to a more efficient execution of a multi-agent system. [17].

In this approach, agents willing to perform similar actions are grouped in separate

entities called arenas, following the Mediator design pattern [13]. Agents choose and

4http://age.agh.edu.pl
5https://github.com/maciek123/pyage
6http://paraphrase.agh.edu.pl

2016/03/22; 21:40 str. 6/16

88 J. Stypka, P. Anielski, S. Mentel et al.

3.4. Execution model based on parallel skeletons 75

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

join an arena depending on their state. Arenas split incoming agents into groups

of certain cardinality and trigger the actual actions. Every kind of agent behavior

is represented by a separate arena (e.g. in the case of EMAS there are arenas for

meeting, reproduction and migration).

The dynamics of the multi-agent system are fully defined by two functions. The

first function represents agent behavior and chooses an arena for each agent (mapping

step). The second function represents meeting logic and is applied in every arena

(reducing step). This approach is similar to the MapReduce model and has the

advantage of being very flexible, as it can be implemented in both a centralized and

synchronous way or a decentralized and asynchronous one, as we show further below.

4. Skel – general purpose tool for parallelization

An efficient parallel implementation of a complex algorithm is typically a challenging

and time-consuming task. It requires significant effort to maximize speedup using soft-

ware tools for parallel hardware such as operating system threads, shared memory and

synchronization mechanisms. In such implementations, the logical structure of the al-

gorithm or the problem is often coupled to the physical architecture of hardware. This

is a significant disadvantage, as the decision on how to make a computation parallel

should depend on the problem and its size. Moreover, an implementation created for

a particular machine is often suboptimal on a different computer architecture. There-

fore, coupling the algorithm with the hardware is inflexible and hardware-dependent.

The Skel library was designed to efficiently solve these issues with a different pro-

gramming model for parallel algorithms. The library is a result of the ParaPhrase FP7

EU project [15]. The project defines a new methodology, based on parallel patterns,

for the design and implementation of parallel applications on heterogeneous hardware

architectures. A pattern describes a parallel computation by highlighting the func-

tional behavior instead of the implementation details. The patterns are composed by

a programmer into algorithmic skeletons.

A skeleton is represented as a directed graph of nodes, each of which defines

a parallel computational behavior. Thus, a skeleton tree corresponds to a specific

pattern of computation, in which the number of nodes and the data distribution

policies are explicitly specified. The details related to the implementation on a specific

target architecture are hidden. As shown in Figure 2, a parallel application designed as

a composition of parallel patterns is mapped to the available hardware resources, and

it may be dynamically re-mapped to meet application needs and hardware availability.

Moreover, the application can easily be restructured using a refactoring tool such as

PaRTE [4] in order to change or improve the used parallel patterns.

The basic parallel patterns of Skel library are:

• Pipe – a sequence of stages, where the output of one stage is an input for the

next stage. A single data item is executed in each stage in turn, but separate

data items may be executed in different stages in parallel.

2016/03/22; 21:40 str. 7/16

Parallel patterns for agent-based evolutionary computing 89

76 3.4. Execution model based on parallel skeletons

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

• Farm – embarrassingly parallel computations in which every data item can be

computed independently of others.

• Map and Reduce – split collective data structure into parts, perform operations

on them in parallel and aggregates the results.

• Feedback – a skeleton equivalent of a loop, feeds its output in its input until

a stop condition is met.

Application
Design

computation
unit

Pattern-based
Development

or
Refactoring

SKEL-based
Application

cu
cu

cu cu

SKEL-based
Application

cu

cu cu

SKEL-based
Application

cu cu
cu

cu cu

Execution environment

Dynamic mapping

CPU

core core

core core

CPU

core core

core core

CPU

core core

core core

CPU

core core

core core

GPU

cu cu

cu cu cu

cu

cu

cu cu

cu cu

cu cu

cu

cu cu cu

cu

Figure 2. Parallel program execution schema. Application written using Skel as a graph of

patterns is dynamically mapped to available hardware.

The Skel library is implemented in Erlang. It is based on typical Erlang mech-

anisms and provides higher level skeleton abstractions. It accepts a description of

the skeleton workflow (which is the application skeleton graph) and an input data

stream and processes them to produce the output data stream. The output stream

represents the results produced by the parallel execution of the skeleton graph on the

input stream items.

This library allows to use parallel hardware with a minimum effort from the pro-

grammer. Single pieces of computation, provided as Erlang functions, are composed

into a skeleton within a few lines of code. All the problems of process pooling, data

management and efficient hardware mapping are solved transparently.

5. Skel-based EMAS implementation

A general algorithm conducted in one of EMAS evolutionary islands may look as

follows:

1. Allow each of the agents to conduct a subsequent step of its work.

2. Gather signatures of actions to be performed by the agents: e.g. reproduce, die,

migrate.

3. Perform the actions in the order of notification: e.g. produce an offspring based

on two agents wanting to reproduce and transfer appropriate amount of energy

2016/03/22; 21:40 str. 8/16

90 J. Stypka, P. Anielski, S. Mentel et al.

3.4. Execution model based on parallel skeletons 77

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

from parents, remove a dying agent and distribute its remaining energy among

other agents, migrate an agent between the islands.

4. Unless a stop condition is met, return to step 1.

At the same time, a general algorithm of one step conducted in one of EMAS agents

may look as follows:

1. With small probability, decide to migrate and notify the evolutionary island

accordingly.

2. If the energy level is higher than some reproduction threshold, notify the evolu-

tionary island accordingly.

3. If the energy level is lower than some death threshold, notify the evolutionary

island accordingly.

4. Otherwise, meet another agent, compare the fitness values and exchange some

energy.

Assuming the existence of several evolutionary islands, the most obvious paralleliza-

tion strategy is to represent each island as a separated thread or even as a process.

Another solution is to introduce parallel execution of the particular types of opera-

tions within a single island. Meetings for energy transfer, reproduction and migration

are independent and can be executed in parallel. Moreover, even each agent may be

implemented completely asynchronously.

Depending on the complexity of the operations to be performed, different types of

parallelism may be more efficient. Therefore, it is advantageous to be able to express

the multi-agent algorithm in terms of high-level functions and leave out execution

details. These high-level functions can be later combined to match a specific problem

size and the available hardware resources. The Skel library provides exactly the

required mechanisms to achieve this.

The Skel-based EMAS implementation is composed of several simple skeletons

nested within each other. It enables a high-level approach as well as easy code devel-

opment and maintenance.

The main skeleton that enables continuous program iteration is the feedback

skeleton. It contains a workflow describing one algorithmic cycle and a condition that

has to be fulfilled in order for the program to continue the execution. The definition

of the main algorithm loop with a time-based stop condition is shown in Listing 1.

Listing 1. The feedback loop of the algorithm.

1 StopCondition = fun(_Agents) -> os:timestamp () < EndTime end.

2 Skeleton = {feedback , [MainWorkflow], StopCondition}.

3
4 FinalPopulation = skel:do([Skeleton], [InitialPopulation]).

The main workflow embedded in the feedback skeleton is a pipeline consisting

of three main functions (see Listing 2). These operations are executed sequentially

2016/03/22; 21:40 str. 9/16

Parallel patterns for agent-based evolutionary computing 91

78 3.4. Execution model based on parallel skeletons

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

in the first seq skeleton of the pipeline. Concrete definitions of the aforementioned

functions are shown in Listing 3.

Listing 2. The main workflow of the algorithm.

1 MainWorkflow = {pipe , [{seq , GroupAgents},

2 {map , [{seq , UpdateAgents}], Workers},

3 {seq , Shuffle}]}.

The first function (GroupAgents), is responsible for choosing an action for ev-

ery agent, performing migration between islands and eventually grouping agents with

similar behaviors (actions) on the same islands. Agents choose some action (repro-

duction, fight, death) depending on their state (amount of energy). Agents can also

choose to migrate with some low probability.

The second function (UpdateAgents) is where all the evolutionary operations are

performed and it is parallelized with the map skeleton with a predefined number of

workers. Each worker processes one agent group at a time applying an appropriate

meeting function until all of the groups have been handled.

For every kind of behavior (reproduction, fight, death), a specific meeting func-

tion is called. Fights are tournaments in which agents compare fitness and the loser

transfers some of its energy to the winner. Reproduction uses classical evolutionary

variation operators to derive offspring from existing agents. Death meetings simply

yield an empty list to remove the incoming agents from the population.

The third function’s purpose is to shuffle the final agent list, so that the interac-

tions in future generations happen between random individuals.

Listing 3. Particular stages of the algorithm.

1 GroupAgents = fun (Agents) ->

2 AgentsWithAction = lists:map(ChooseAction , Agents),

3 Migrated = lists:map(Migrate , AgentsWithAction),

4 GroupByAction(Migrated)

5 end ,

6
7
8 UpdateAgents = fun({{Island , Behavior}, Agents}) ->

9 NewAgents = Meetings({Behavior , Agents}),

10 [{Island , A} || A~<- NewAgents]

11 end ,

12
13 Shuffle = fun(Agents) ->

14 shuffle(lists:flatten(Agents))

15 end.

The basic logic and parallel structure of the algorithm can be expressed in ap-

proximately 50 lines of code. Even including all the evolutionary operations as well

2016/03/22; 21:40 str. 10/16

92 J. Stypka, P. Anielski, S. Mentel et al.

3.4. Execution model based on parallel skeletons 79

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

as logging and other monitoring code, the total volume does not exceed few hundred

lines, which is significantly compact.

Thanks to skeletons provided by the Skel library, the implementation is very

simple as well as easy to read and maintain. The program is parallelized automatically

which reduces boilerplate code and improves readability and clarity of the source files.

6. Experimental results and comparison

6.1. Problem definition

The evaluation focuses on solving a discrete optimization problem, namely finding

Low Autocorrelation Binary Sequences, an NP-hard combinatorial problem with

a very simple formulation and many applications in telecommunication, meteorol-

ogy, physics and chemistry [12]. The problem consists in finding a binary sequence

S = {s0, s1, . . . , sL−1} with length L where si ∈ {−1, 1} which minimizes the energy

function E(S):

Ck(S) =
L−k−1∑

i=0

sisi+k E(S) =
L−1∑

k=1

C2
k(S).

6.2. Test organisation

We ran our experiments on the ZEUS supercomputer provided by the Pl-Grid7 in-

frastructure at the ACC Cyfronet AGH8. We used nodes with 2 Intel Xeon X5650

processors each (12 cores per node) and a total of 24 GB of memory per node. In

consecutive experiments, different numbers of cores were used.

We performed experiments for several CPU configurations and problem sizes.

We assessed the weak and strong scalability of our solution by varying problem sizes

and used cores. Every experiment was run for 30 minutes and repeated 30 times for

statistical significance. The results below are averaged over these runs.

6.3. Experiment results

Figure 3(a) shows fitness plots for different problem sizes that have all been run

on 1 core. There is no surprise here, the harder the problem, the more time our

program needs to improve the solution. Figures 3(b)–(d), on the other hand, show how

fitness value converges for different CPU core configurations. One can see significant

improvement while adding more computing cores on all problem sizes. Furthermore

the difference becomes more visible for larger problems, and the average final fitness

values for each experiment are shown in Table 1.

To assess the scalability of the system, we recorded the intensity of interactions

in the system, represented by the number of agent reproductions happening every

7http://www.plgrid.pl/en
8http://www.cyfronet.krakow.pl/en/

2016/03/22; 21:40 str. 11/16

Parallel patterns for agent-based evolutionary computing 93

80 3.4. Execution model based on parallel skeletons

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

(a) Fitness convergence for different problem
sizes on 1 CPU core.

(b) Fitness convergence for problem size 40 on
different cores.

(c) Fitness convergence for problem size 50 on
different cores.

(d) Fitness convergence for problem size 60 on
different cores.

(e) Reproductions per second for different prob-
lem sizes.

(f) Speedup.

Figure 3. Scalability and efficiency of the computation using Skel.

2016/03/22; 21:40 str. 12/16

94 J. Stypka, P. Anielski, S. Mentel et al.

3.4. Execution model based on parallel skeletons 81

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

second (Fig. 3e). We can also normalize these values to derive speedup (Fig. 3f),

along with an “ideal speedup” reference line. As we can see, scalability is virtually

linear for all problem sizes.

Table 1

Average fitness values and their standard error at the end of the experiments, for different

problem sizes and number of cores.

Cores
Problem size

40 50 60

1 6.6936 0.0318 6.2240 0.0683 5.8479 0.0474

2 6.7913 0.0523 6.4907 0.0879 5.9742 0.0533

4 6.9127 0.0444 6.7665 0.0676 6.1592 0.0492

8 7.1537 0.0505 6.9047 0.0968 6.3291 0.0578

12 7.2201 0.0449 7.2273 0.1068 6.5007 0.0552

7. Conclusions

Population metaheuristics (e.g. evolutionary or agent-based) are a natural candidate

for implementation on parallel computing hardware. A traditional implementation of

such systems, using e.g. MPI, is a difficult and error-prone task.

Fortunately, a number of functional technologies, such as Scala or Erlang, can

help in an efficient implementation of such systems by changing the perspective. In-

stead of coupling the algorithm to the underlying hardware, programmers can focus

on the problem domain and design multi-agent systems while abstracting from their

actual runtime execution.

In this paper, we show how to design an Evolutionary Multi-Agent System in

terms of such high-level functions and use parallel patterns and skeletons from the skel

library in order make the algorithm more efficient on multi-core hardware. However,

the algorithm can be easily adapted to different hardware by changing structure of

skeletons.

The most important feature of the proposed implementation model is its sim-

plicity. The basic logic and parallel structure of the algorithm can be expressed in

approximately 50 lines of code. Our results show that the implemented system was

able to efficiently utilize all tested configurations. The algorithm also scales well with

the introduction of skeleton parallelism, as increasing the number of cores allows to

reach better optimisation results faster.

Future work includes tackling more difficult problems and comparing our results

with ones provided by different software platforms.

Acknowledgements

The research presented in the paper was partially supported by the European Commis-

sion FP7 through the project ParaPhrase: Parallel Patterns for Adaptive Heteroge-

2016/03/22; 21:40 str. 13/16

Parallel patterns for agent-based evolutionary computing 95

82 3.4. Execution model based on parallel skeletons

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

neous Multicore Systems, under contract no.: 288570 http://paraphrase-ict.eu.

The research presented in this paper received partial financial support from AGH

University of Science and Technology statutory project no. 11.11.230.124. The

research presented in the paper was conducted using PL-Grid Infrastructure http:

//www.plgrid.pl/en.

References

[1] Specification of Java Remote Method Invocation. https://jcp.org/en/jsr/

detail?id=368.

[2] Specification of the Java Message Service. http://docs.oracle.com/javase/1.

5.0/docs/guide/rmi/spec/rmiTOC.html.

[3] Bellifemine F., Poggi A., Rimassa G.: JADE – A FIPA-compliant agent frame-

work. In: Proceedings of PAAM, vol. 99, pp. 97–108, London, 1999.

[4] Bozó I., Fördős V., Horpácsi D., Horváth Z., Kozsik T., Kőszegi J., Tóth M.:

Refactorings to Enable Parallelization. In: Trends in Functional Programming,

pp. 104–121, Springer, Berlin, 2015.

[5] Bozó I., Fordós V., Horvath Z., Tóth M., Horpácsi D., Kozsik T., Köszegi J.,

Barwell A., Brown C., Hammond K.: Discovering parallel pattern candidates in

erlang. In: Proceedings of the Thirteenth ACM SIGPLAN workshop on Erlang,

pp. 13–23, ACM, 2014.

[6] Braubach L., Lamersdorf W., Pokahr A.: Jadex: Implementing a BDI-

infrastructure for JADE agents. Exp, vol. 3(3), pp. 76–85, 2003.

[7] Brown C., Danelutto M., Hammond K., Kilpatrick P., Elliott A.: Cost-directed

refactoring for parallel Erlang programs. International Journal of Parallel Pro-

gramming, vol. 42(4), pp. 564–582, 2014.

[8] Byrski A., Dreżewski R., Siwik L., Kisiel-Dorohinicki M.: Evolutionary Multi-

Agent Systems. The Knowledge Engineering Review, vol. 30(02), pp. 171–186,

2012.

[9] Byrski A., Schaefer R., Smo lka M., Cotta C.: Asymptotic guarantee of success

for multi-agent memetic systems. Bulletin of the Polish Academy of Sciences:

Technical Sciences, vol. 61(1), pp. 257–278, 2013.

[10] Cantú-Paz E.: A Survey of Parallel Genetic Algorithms. Calculateurs Paralleles,

Reseaux et Systems Repartis, vol. 10(2), pp. 141–171, 1998.

[11] Chen S.H., Kambayashi Y., Sato H.: Multi-Agent Applications with Evolutionary

Computation and Biologically Inspired Technologies. IGI Global, Hershey, Penn-

sylvania, 2011.

[12] Gallardo J.E., Cotta C., Fernández A.J.: Finding low autocorrelation binary

sequences with memetic algorithms. Applied Soft Computing, vol. 9(4), pp. 1252–

1262, 2009.

[13] Gamma E., Helm R., Johnson R., Vlissides J.: Design patterns: elements of

reusable object-oriented software. Pearson Education, Harlow, UK, 1994.

2016/03/22; 21:40 str. 14/16

96 J. Stypka, P. Anielski, S. Mentel et al.

3.4. Execution model based on parallel skeletons 83

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

[14] Gutknecht O., Ferber J.: The madkit agent platform architecture. In: Infrastruc-

ture for Agents, Multi-Agent Systems, and Scalable Multi-Agent Systems, pp. 48–

55, Springer, 2001.

[15] Hammond K., Aldinucci M., Brown C., Cesarini F., Danelutto M., González-

Vélez H., Kilpatrick P., Keller R., Rossbory M., Shainer G.: The paraphrase

project: Parallel patterns for adaptive heterogeneous multicore systems. In: For-

mal Methods for Components and Objects, pp. 218–236, Springer, 2013.

[16] Krzywicki D., Byrski A., Kisiel-Dorohinicki M., et al.: Computing agents for

decision support systems. Future Generation Computer Systems, vol. 37, pp. 390–

400, 2014.

[17] Krzywicki D., Stypka J., Anielski P., Turek W., Byrski A., Kisiel-Dorohinicki M.,

et al.: Generation-free Agent-based Evolutionary Computing. Procedia Computer

Science, vol. 29, pp. 1068–1077, 2014.

[18] Luke S., Cioffi-Revilla C., Panait L., Sullivan K., Balan G.: Mason: A multiagent

simulation environment. Simulation, vol. 81(7), pp. 517–527, 2005.

[19] North M.J., Collier N.T., Ozik J., Tatara E.R., Macal C.M., Bragen M., Sydelko

P.: Complex adaptive systems modeling with repast simphony. Complex Adaptive

Systems Modeling, vol. 1(1), pp. 1–26, 2013.

[20] Pidd M., Cassel R.A.: Three phase simulation in Java. In: Proceedings of the 30th

conference on Winter simulation, pp. 367–372, IEEE Computer Society Press,

1998.

[21] Pokahr A., Braubach L., Jander K.: The jadex project: Programming model. In:

Multiagent Systems and Applications, pp. 21–53, Springer, Berlin, 2013.

[22] Russell S., Norvig P., Intelligence A.: Artificial Intelligence: A modern approach.

Prentice-Hall, Egnlewood Cliffs, 1995.

[23] Sarker R.A., Ray T.: Agent-Based Evolutionary Search, vol. 5. Springer Science

& Business Media, 2010.

[24] Uhruski P., Grochowski M., Schaefer R.: Multi-agent computing system in a

heterogeneous network. In: Parallel Computing in Electrical Engineering, 2002.

PARELEC’02. Proceedings. International Conference on, pp. 233–238, IEEE,

2002.

Affiliations

Jan Stypka
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Krakow, Poland, janstypka@gmail.com

Piotr Anielski
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Krakow, Poland, pr.anielski@gmail.com

Szymon Mentel
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Krakow, Poland, mentel.szymon@gmail.com

2016/03/22; 21:40 str. 15/16

Parallel patterns for agent-based evolutionary computing 97

84 3.4. Execution model based on parallel skeletons

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Daniel Krzywicki
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Krakow, Poland, krzywic@agh.edu.pl

Wojciech Turek
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Krakow, Poland, wojciech.turek@agh.edu.pl

Aleksander Byrski
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Krakow, Poland, olekb@agh.edu.pl

Marek Kisiel-Dorohinicki
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Krakow, Poland, doroh@agh.edu.pl

Received: 8.02.2015

Revised: 27.06.2015

Accepted: 29.06.2015

2016/03/22; 21:40 str. 16/16

98 J. Stypka, P. Anielski, S. Mentel et al.

3.4. Execution model based on parallel skeletons 85

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

86 3.5. Execution model based on adaptive dataflows

3.5. Execution model based on adaptive dataflows

The final execution model is based on adaptive dataflows, where agents are implemented as elements

flowing in a variable-rate reactive stream 1. The major difference compared to parallel skeletons is that

because of non-blocking backpressure, the rate of the stream can be locally compacted or expanded to

allow neighboring agents to interact.

The architecture of this execution model is divided into two parts. The first is a looping graph which

is responsible for iterating the algorithm (Figure 3.7a). Agents are consumed from an initial population,

transformed through a Step stage and fed back into the input. When the initial source is depleted, the

graph will continuously drain from the feedback loop. In such recursive streams, care must be taken to

ensure the liveliness of the algorithm and the resource boundedness of the system. In our case, this is

guaranteed by the fact that the total energy in the multi-agent system bounds the possible number of

agents in the stream, and an intermediate buffer in the feedback loop can be sized accordingly.

The second part of the architecture is the Step flow (Figure 3.7b). The flow of agents is partitioned

by computing the behavior function for each agent. Every partition flows through a substream where

subsequent agents are grouped according to the arity of the behavior. This grouping is made possible

by the variable rate of reactive streams. The Grouped Within stage has a different input and output rate;

it will emit a single output containing the last n inputs, or all the inputs observed within a timeout pe-

riod, whichever happens first. This timeout behavior can lead to uncontrolled non-determinism, but is

necessary to ensure the liveliness of the system, for example if only a single agent chooses a particu-

lar behavior.

Within each substream, the meetings function is applied on every group. The output of each meeting

may consist in modified input agents (fight and reproduction), new agents (reproduction) or no output at

all (death). Again, this is made possible by the ability to decouple input and output rates of the stages.

Finally, the outputs of all the meetings are merged into a single output. Multiple meetings for the same

behavior may be happening in parallel (as defined by a parallelism factor), but the results are kept or-

dered within a substream. However, as the Grouped Within stage already introduces non-determinism,

each substream executes in a separate asynchronous context (possibly a different thread or node) for

greater efficiency.

Except for the slight non-determinism forced by liveliness requirements, the rest of the stream pro-

cessing is deterministic. In general, stronger stochastic properties are necessary for metaheuristics such

as EMAS [32]. To this purpose, there is an additional Shuffling stage in the Step flow which is responsible

for changing the order of agents in the stream.

It is not trivial to shuffle a (possibly infinite) stream, where by definition we do not know all the

elements at any given time. In the following publication, I describe a technique inspired from Reservoir

Sampling [33]. The stage maintains an internal buffer of the input elements in has seen so far. When an

1http://www.reactive-streams.org/

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

3.5. Execution model based on adaptive dataflows 87

Initial
Source

Step

Infinite
Sink

Concat Broadcast

async

Buffer

asynchronous
boundaries

initial loop

subsequent loops

(a) The looping graph

Shuffle

Partition
by Behavior

Grouped
Within

Meeting
Meeting

Meeting

Merge

Grouped
Within

Meeting
Meeting

Meeting

asynchronous
boundaries

(b) The Step flow

Figure 3.7. In the execution model based of adaptive dataflows, agents are modeled

as elements flowing in a reactive stream. The first part of the stream is a looping

graph which introduces a feedback loop and allows iteration. The Step flow includes a

shuffling stage which introduces randomness in the order of stream elements using a

technique similar to reservoir sampling. It also includes subflows for different behav-

iors, with a grouping stage which uses non-blocking backpressure to locally compact

the stream and allow subsequent elements to interact.

output element is requested by downstream, it is chosen from within the buffer according to some policy.

In the paper, I examine several policies, such as random, min-max or an annealed combination of those.

This execution model combines the benefits of the previous ones. It is possible to have high con-

currency like in the actor-based model, however this concurrency can be explicitly controlled for using

an appropriate shuffling policy. It is also possible to have high parallelism and scalability, like in the

skeleton-based model. I also show that the previous execution models can be simulated by using specific

shuffling policies. As such, the dataflow execution model is the most general one and previous execution

models can be simulated as specific instances of adaptive dataflows.

The following publication describes in more depth the working details of the implementation of

this model. In particular, it illustrates how this model generalizes the other ones. The publication also

includes a detailed experimental analysis of the different parameters of the model for two classical op-

timization problems. As of this writing, the publication has been accepted for publication in the journal

"Concurrency and Computation: Practice and Experience".

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Received <day> <Month>, <year>; Revised <day> <Month>, <year>; Accepted <day> <Month>, <year>
DOI: xxx/xxxx

SPECIAL ISSUE PAPER

Concurrent agent-based evolutionary computations as
adaptive dataflows
Daniel Krzywicki | Łukasz Faber | RomanDębski*

Department of Computer Science, AGH
University of Science and Technology, Al.
Mickiewicza 30, 30-059 Kraków, Poland
Correspondence
*Department of Computer Science, AGH
University of Science and Technology, Al.
Mickiewicza 30, 30-059 Kraków, Poland. Email:
rdebski@agh.edu.pl
Present Address
Department of Computer Science, AGH
University of Science and Technology, Al.
Mickiewicza 30, 30-059 Kraków, Poland.

Abstract
This paper introduces a new formal description of the execution model for agent-based comput-
ing systems, in the form of an adaptive dataflow decoupled from the domain-specific semantics
of the computation. We show that the execution models studied in previous work can be unified
in this common model. The parameters of the model, such as queuing policies and granularity of
the data in the floware analysed. Several queueing alternatives are benchmarked to demonstrate
how they affect the efficiency of the computation. Using the example of a multi-agent evolution-
ary optimisation problem solver, the new approach is shown to outperform the classic one. This
proposed model is well suited to functional languages and can be easily mapped onto different
classes of hardware – from simple, single-core computers to distributed environments.
KEYWORDS:
execution model, multi-agent system, evolutionary algorithm, simulated annealing, functional
programming, reactive streams

1 INTRODUCTION
The semantics of an agent-based computation can be defined independently from the underlying execution model of agent interactions 1. Such a
computation, which can be specified functionally, can be then “plugged” into different execution models (for instance a sequential model, a classic
island-model, a fine-grained (parallel) model 2 or a dataflow 3). The choice of the execution model of agent interactions can have an impact on the
behaviour of the computation as well as on raw performance 1. By decoupling the semantics of the computation from the execution model, we can
meaningfully compare different executionmodels and tune them to particular execution environments. In consequence, the computation itself can
be easily ported to different machines. This is especially important in the case of massively parallel computers.
The exploitation of massive parallelism was the original motivation for the research into dataflow (and parallel data-driven computation in gen-

eral) 4,3. In the dataflowexecutionmodel, a program is represented by a directed graph inwhich the nodes correspond to some units of computation
(operators) and the directed edges to data dependencies (data flows). This execution model is well suited to functional languages and can be easily
mapped into different classes of hardware – from simple, single-core computers to distributed environments.
Modellingmulti-agent evolutionary computations as static dataflowswas investigatedwithin the ParaPhrase Project 5,6, where the authors pro-

posed a kind of virtual dataflowmachine programmedwith the use of a set of predefined “operators” (each corresponding to one parallel computing
pattern). In this approach, the computation (dataflow) is specified upfront and remains unchanged at runtime and the rate of elements within the
flow is constant.
This paper introduces a new execution model for agent-based computing systems1 based on variable-rate dynamic dataflows. When compared

to previous work 5,6,1, the newmodel has more “degrees of freedom” (e.g. different queuing policies, varying granularity of the data in the flow). As
a result, it leaves more space for optimisation both at the programming phase and at runtime. The support for an auto-adaptation is ”embedded” in

1An implementation of multi-agent evolutionary algorithm is used as an example of such a system.

88 3.5. Execution model based on adaptive dataflows

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

2 Daniel Krzywicki, Łukasz Faber and RomanDębski

the model. The proposed model is very general both from the deployment point of view and because of the scope of the computation/simulation
tasks it covers. In fact, we demonstrate that this new executionmodel can be considered as a generalized of the previously mentioned ones.
Themain contributions of this paper are:
• a specification of the new, dataflow-based execution model together with the “derivations” of some of its special cases (or projections); for
instance, the classic, synchronous, population-based EMAS or the generation-free EMAS,

• the results of (initial) experimental validation of themodel, which show that the new approach outperforms the classic EMAS.
The remainderof this paper is organisedas follows. Section2contains a reviewof someconcurrency-relatedaspects of agent-basedevolutionary

computations. Following that, in section 3, the proposed execution model for this class of computations is presented. In section 4, the results of
experimental verification of themodel are given and discussed. The last two sections (i.e. 5, 6) contain the relatedwork overview and the conclusion
of the study.

2 CONCURRENCY INAGENT-BASED EVOLUTIONARYCOMPUTATIONS
The domain of our work is agent-based evolutionary computations (EMAS) 7, hybrid meta-heuristics which combine elements of multi-agent sys-
tems with evolutionary algorithms. They solve an optimisation problem by evolving a population of agents, each owning a genotype, which is an
encoded candidate solution. The representation of this solution is problem dependent, but will usually be a binary or real-valued vector.
This solution is evaluated to determine the fitness of the agent. The fitness is a number or a vector of numbers in the case of multi-objective

optimisation. Theoptimisationproblemconsists in finding the candidate solution(s)with thebest fitness.Dependingon theproblem, thebest fitness
may mean the maximum or the minimal one across all candidate solutions (or the set of vectors such that no other ones are strictly better in all
dimensions, in the case of multi-objective optimisation).
In this paper,weassume that the solution representedbyanagent stays constant during its lifetime. Fitness evaluation,which is usually an expen-

sive operation, will therefore be executed only once for each agent. Agents execute different actions, communicate among themselves and interact
with the environment and should be autonomous and share no global knowledge 8. Therefore, in contrast to traditional evolutionary algorithms,
selective pressure is designed to emerge from peer to peer interactions between agents instead of beingmanaged globally.
Such selective pressure is introduced by assigning agents with a piece of non-renewable resource, called energy 7 which drives the behavior of

the agent. “Good” behavior is rewarded with additional energy whilst “bad” behavior results in energy being taken away. In this paper, we assume a
very simple strategy: “being good” means having better fitness.
So, the rules for managing energy are as follows:
• Agents in the first generation are given some initial energy.
• Agents receive some energy from their parents when created.
• If the energy of an agent is below some threshold, it fights with another agent by comparing their fitness values – the better agent takes
energy from theworse one.

• Agentswith sufficient energy can reproduce and yield new agents. The genotype of the children is derived from their parents using variation
operators.

• When the energy of an agent drops to zero, it is removed from the system.
This strategy introduces a feedback loop in the systemwhich results in emergent selective pressure. In contrast to traditional evolutionary algo-

rithms, thenumber of agentsmayvary over time.As energy is discrete and cannot be infinitely subdivided, themaximal amount of agents is bounded
by the total energy in the system.
What remains to be defined in such a model is the execution model of agent interactions, i.e., how we choose which agents fight or reproduce

with each other andwhen they do it. This choicemay impact the semantics of the algorithm asmuch as the rules governing energy.
For example, a computationwhere every agent always interactswith a restricted set of neighbourswill yield different results than a computation

where every pair of agents can meet – in the first case there is a higher chance that multiple, genetically diverse subpopulations coexist, which is a
phenomenon called allopatric speciation and can be useful for example in multimodal optimization 9,10.
Another aspect of the model of interactions is how they are related causally during the computation. In other words, how concurrent are the

interactions as perceived by the agents. One possible approach is to define a total order on interactions, such that the consequences of every inter-
action between a pair of agents is immediately visible to all other agents in subsequent interactions. A different way is to have a partial order
of interactions, such that multiple interactions are conceptually executed in isolation and their consequences are eventually propagated to other
agents. Note that the latter example does not imply parallelism. The choice is foremostly about how information propagates in the multi-agent
system.

3.5. Execution model based on adaptive dataflows 89

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Daniel Krzywicki, Łukasz Faber and RomanDębski 3
However, if agent interactions can be executed in parallel, the system as a whole can progress faster. As such, different execution models are

amenable to various degrees of parallelism, as described in Section 2.2.

2.1 The traditional approach to concurrency in evolutionary algorithms
Traditionally, evolutionary algorithms have focused more on high-level parallelism rather than on the concurrency of the individuals. For example,
the island model consists in splitting a population of individuals into several sub-populations which can be evolved in parallel 11. However, the
algorithmwithin each island is sequential, and at each step a new population is born out of the previous one as a whole.
There exists several methods of choosing members for the new population. The population size usually remains constant, and new individuals

may be chosen from a pool of offspring while disregarding the previous generation in a strategy denoted as (µ, λ) 12. Offspring can also compete
with individuals from theprevious population in a strategy denoted (µ+λ). Overall, there is no concurrency at the individual level, as the population
is transformed successively through discrete generations (Figure 1 a).
Considering individuals as agents and introducing emergent selection through energy exchange allows for greater flexibility. Generations no

longer exist conceptually, as agents of different agemaymeet as long as theymanage to keep their energy and live long enough.
In practice, however, initial implementations of agent-based evolutionary algorithms were still discrete-step simulations. In every step, agents

would be randomly paired with each other in order to interact. New agents may be created as a result of such interactions, and these agents were
added to the population in the next step. There were no generations at the individual level, but the population was still transformed through suc-
cessive discrete steps. In contrast with a (µ + λ) strategy, the transformation function was not explicitly defined but emergent instead, and the
population size could vary (Figure 1 b) There was still no concurrency at the agent level, only non-determinism through random shuffling.

a) b) c)

g
2
 = f(g

1
)

g
3
 = f(g

2
)

g
2
 = h(g

1
)

g
3
 = i(g

2
)

g
2

g
1

g
3

t

t
0

t
i

g
2

g
1

g
3

FIGURE 1 Different approaches to concurrency in evolutionary algorithms. Traditional algorithms usually have no concurrency and the population
is transformed successively through discrete generations using a globally controlled selection mechanism (a). Initial EMAS implementations allow
the use of an emergent selection mechanism which may be different at each step and allow the population size to vary, but there are still discrete
generations (b). As described in Section 2.2, meeting arenas allow the introduction of actual concurrency resulting in the cohabitation of individuals
of multiple generations, which are no longer discrete but evolve continuously 2 (c).

2.2 Meeting arenas as away to abstract the concurrency of agents interactions
In 2 we have proposed a design which allows to define a multi-agent computation such as EMAS in a way which is portable across different models
of agent interactions. As such, it becomes possible to meaningfully compare different such execution models, both in terms of performance and
scalability, as in how theymay affect the semantics of a particular algorithm.
We use the metaphor of meeting arenas to convey the intuition of this pattern. Based on their state, agents select an action they are willing to

perform, such as fighting, reproduction, etc. Then, agents conceptually move to an arena where they can meet other agents willing to perform the
same action. In otherwords, meeting arenas allow to split a flowof incoming agents into groups of coherent behavior. Each kind of agent behavior is
represented by a separate arena. Depending on the type of the behavior, agents are grouped together within arenas and interactions can proceed
(see Figure 2).
Therefore, the semantics of theMAS algorithm are fully determined by two functions. The first one consists in agent behavior, which chooses the

arena to meet on based on the state of an agent. The second corresponds to themeeting operationwhich is computed at every arena for groups of
agents. Listing 1 illustrates such functions for the simple EMAS described above.

90 3.5. Execution model based on adaptive dataflows

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

4 Daniel Krzywicki, Łukasz Faber and RomanDębski

Agents MeetingsArena

FIGURE2 Themeeting arenaspattern 2 allows to decouple the semantics of amulti-agent simulation from its executionmodel, and explore different
models of varying concurrency. It consists of dividing agents into groups of similar behavior and performingmeetings between them to yield newor
modified agents. As such, it is similar to theMapReduce programmingmodel.

1 sealed t r a i t Behavior
2 case object Death extends Behavior
3 case object Reproduction extends Behavior
4 case object Fight extends Behavior
5
6 t r a i t GeneticBehavior {
7 def shouldReproduce (energy : I n t) = energy >= reproduct ionThreshold
8
9 def behaviorFunct ion (agent : Agent) = agent . energy match {
10 case 0 => Death
11 case x i f shouldReproduce (x) => Reproduction
12 case _ => Fight
13 }
14 }
15
16 t r a i t GeneticMeetings {
17
18 def f i g h t S t r a t egy : Seq [Agent] => Seq [Agent] = ? ? ?
19 def reproduct ionStrategy : Seq [Agent] => Seq [Agent] = ? ? ?
20
21 def meetingsFunction (behavior : Behavior , agents : Seq [Agent]) = behavior match {
22 case Death =>
23 Seq . empty
24 case Fight =>
25 agents . grouped (2) . f latMap (f i g h t S t r a t egy) . toSeq
26 case Reproduction =>
27 agents . grouped (2) . f latMap (reproduct ionStrategy) . toSeq
28 }
29 }
Listing 1 The behavior function chooses the behavior of an agent based on its current state. Agents exhibiting the same behavior will be
grouped together so that they can interact as defined by the meetings function. For a given behavior and a group of agents exhibiting that
behavior, the meeting functions yields a new group of agents. The output group may contain new agents (which are added to the system) or
skip some input agents (which are then removed from the system).

This approach resembles theMapReduce programmingmodel 13. The agent behavior partitions the agents population intomeeting arenas just as
in themapping phase. Themeeting logic transforms the population and aggregates it back as in the reduce phase.
What is left to define is how and when these functions are combined and that constitutes the execution model of agents interactions. A simple

such a model is shown in Listing 2, where a population is iteratively transformed by repeated application of the behavior and meetings functions.

3.5. Execution model based on adaptive dataflows 91

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Daniel Krzywicki, Łukasz Faber and RomanDębski 5
Note that there is no parallelism in this example, yet agent interactions are conceptually concurrent to some extent, in the sense that all meetings
are computed independently and their consequences are only visible in the next iteration.

1 c l a s s SequentialModel (behaviorFunct ion : BehaviorFunction , meetingFunction : MeetingFunction) {
2
3 def run (steps : Int , i n i t i a l P o p u l a t i o n : Seq [Agent]) : Seq [Agent] = {
4 Stream . i t e r a t e (i n i t i a l P o p u l a t i o n) (runStep) . apply (steps)
5 }
6
7 def runStep (populat ion : Seq [Agent]]) : Seq [Agent] = {
8 populat ion
9 . shu f f l ed
10 . groupBy (behaviorFunct ion)
11 . f latMap (meetingFunction)
12 . toSeq
13 }
14 }
Listing2 In a sequential executionmodel, thepopulation is transformedstepby stepbyfirst shuffling theagents, thengrouping themaccording
to their behavior, then computing themeetings function on each group of similar behavior, and finally combining the results.

Several more complex executionmodels have been explored so far, each with different limitations.
An execution model based on the composition of parallel skeletons has been described in 14. The Farm skeleton was used to partition the

population according to agent behavior and processed each partition in parallel as a meeting arena. The model proved linearly scalable, but
was semantically equivalent to the sequential one: discrete generations of agents were implied by the iterative transformation of a population
(Figure 1 b). From the point of view of the concurrency of agent interactions, it is as if there was a synchronization barrier forcing agents to wait
for each other after every interaction. This was a consequence of the design of the underlying skeletons which were based on fixed-rate stream
processing.
In turn, an actor-based concurrent execution model has been introduced in 1, where both agents and meeting arenas were modelled as actors

communicating throughmessage passing. As such, agent interactions were truly concurrent and there is no implicit generational synchronization –
instead, the populationwas changing continuously as agents interactedwith each other (Figure 1 c).When applied to an optimization problem, this
execution model proved significantly more efficient in terms of the number of fitness function evaluations needed to reach a solution, demonstrat-
ing that the choice of the execution model can impact the semantics of the multi-agent computation. However, the concurrent properties of the
algorithm could not be easily reasoned about, as they depended on scheduling internals of the underlying actor dispatcher. Moreover, that model
showed to be less scalable on larger numbers of cores as the context switching of actors by the dispatcher incurred a performance overhead. Finally,
stream-like patterns emerged, as data appeared to be repeatedly sent between the same actors. This suggested that such a fine-grained level of
concurrencymight not be needed to preserve the interesting properties of themodel.

3 NEWEXECUTIONMODEL FORAGENT-BASED EVOLUTIONARYCOMPUTATIONS
In this paper, we capitalize on previous research and introduce a data-flow execution model which combines the advantages of skeleton and actor-
based executionmodels. Thismodel alsomakes it precisely control the ordering of agent interactions and use computing resourcesmore efficiently.
It is also shown to be a generalization of the previous approaches, as these can be simulated as special cases of the new executionmodel.
This new approach is based on variable-rate streaming based on actors. The building blocks described below have been implemented using the

Akka Streams2 library, which allows to program resource-bounded, non-blocking, back-pressured, asynchronous data streams compliant with the
Reactive Streams3 standard.

2https://akka.io/docs/
3https://www.reactivemanifesto.org/

92 3.5. Execution model based on adaptive dataflows

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

6 Daniel Krzywicki, Łukasz Faber and RomanDębski

In Akka Streams, a stream is described as a graph of connected stages. Some stages are Sources which emit elements, some are Sinks which
consume elements, possiblywith a side-effect. Stageswith one input and one output port are called Flows. The simplest graph is a Source connected
to a Sink, possibly through several flows. However, stages can have any number of input and output ports, allowing to define arbitrary computing
graphs.
The rate of elements may be different between stages. In particular, stages can emit zero, one or more output elements for every input element.

Akka Streams use pull-based back-pressure to adapt publishers offer to subscribers demand. In other words, elements will be emitted as fast as
possible, as long as there is pending demand. This allows to dynamically switch between a pull and a push approach to maximise throughput while
guaranteeing boundedness. Stages are synchronous by default and asynchronous boundaries can be explicitly defined by the user. As much as
possible, Akka Streams combines the execution of stages within asynchronous boundaries tominimise thread-switching overhead.
AnAkka Streams graph is defined declaratively and can bematerialized into a set of actorswhichwill start exchanging data along the edges of the

graph.Materialization produces a value, which is usually an asynchronous result which will be available once the stream is completed or shut down
(see Listing 3).

1 val wordsSource : Source [Str ing , NotUsed] = Source (L i s t ("some" , "words " , " to " , " count "))
2 val coutingFlow : Flow [Str ing , Int , NotUsed] = Flow [S t r i ng] . f o l d (0) { case (i , _) => i + 1 }
3 val s ink : S ink [Int , Future [I n t]] = Sink . l a s t [I n t]
4
5 val graph : RunnableGraph [Future [I n t]] = wourdsSource . v i a (coutingFlow) . toMat (s ink) (Keep . r i g h t)
6 val futureSum : Future [I n t] = graph . run
7 futureSum . onSuccess (sum => p r i n t l n (sum))
Listing 3 The basic building blocks in Akka Stream are Sources, Flows and Sinks. They can be composed declaratively into graphswhich are an
immutable description of a stream. Graphs with no loose input or output edges can be run, instantiating an actor-based stream andmaterial-
izing some value. In this example, we have a finite source which will emit a sequence of words, a flow which will count the number of inputs
and emit a sum, and a sink which will materialize the last (and unique) value it eventually receive. Materializing this particular graph yields a
futurewhichwill be completedwith the count of words once the stream is done consuming the source. Note the variable rate in this example:
the countingFlowwill only eventually emit a single element once it has consumed all input elements.
The building blocks described in the remaining of this section are also assembled into such a graph. When the graph is run, it starts the com-

putation and materialize a future value which will eventually be completed with the results of the computation (see Listing 4). In practice, the
computation will also side-effect by emitting intermediate logs and statistics to disk.

3.1 Looping graph
In order to iterate an evolutionary algorithm within a stream, we need to introduce a feedback loop in the stream so that output elements may be
inserted back.
Reactive streams do not need to be linear, but can form arbitrary graphs. Some stagesmay havemultiple inputs or outputs and can be connected

to form cycles. Care must be taken to ensure both liveliness and boundedness in such streams. In our case the boundedness is guaranteed because
of the finite energy in the computation, which dictates a finite amount of agents.
Figure 3 shows the graph used to iterate the computation. An infinite sink continually requests element from the graph. Every element con-

sumedby the sink is also broadcast into an explicit buffer. The request from the broadcast propagates through the step stage to a concatenation stage
which will first consume elements from the initial source before switching to the feedback buffer. For every input element, the step stage can emit
zero, one ormany output elements.
Therefore, the initial population will be drained from the initial source, transformed through the step stage into a new population and pushed

in the buffer. Then, elements from the buffer will be continually pulled, transformed and pushed again. The size of the buffer is configured to be
bounded by themaximum possible number of agents, as determined by the total energy in the computation.

3.2 Discrete Generations
Synchronous Step
The looping graph can be used to execute a traditional, synchronous agent-based evolutionary computation (classic EMAS). In such a scenario, there
will only be one element looping through the graph – the whole population as a collection of agents.

3.5. Execution model based on adaptive dataflows 93

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Daniel Krzywicki, Łukasz Faber and RomanDębski 7

Initial
Source

Step

Infinite
Sink

Concat Broadcast

async

Buffer

asynchronous
boundaries

initial loop

subsequent loops

FIGURE 3 Looping graph. The stream used to iterate the computation in a loop. The infinite sink just discards elements. The broadcast stage sends
every input element into the infinite sink and into a buffer. The buffer size must be configured to be able to keep the maximum amount of agents,
as determined by the total energy in the system. The initial source is first drained through the step stage into the buffer, which is then continuously
pulled through the step stage back into itself. Different step stages will be explored further below.

1 val source : Source [Agent , NotUsed] = Source (i n i t i a l P o p u l a t i o n)
2 val step : Flow [Agent , Agent , NotUsed] = ? ? ?
3 val s ink : S ink [Agent , Future [Option [Agent]]] = Sink . f o l d (Option . empty [Agent]) {
4 case (None , agent) => Some (agent)
5 case (Some (bestSoFar) , agent) => Some (max (bestSoFar , agent))
6 }
7
8 def loopingGraph [A , Mat] (
9 source : Source [A , _] ,
10 step : Flow [A , A , _] ,
11 s ink : S ink [A , Mat] ,
12 bu f f e rS i ze : I n t
13) : RunnableGraph [(Mat , K i l l Sw i t ch)] = ? ? ?
14
15 val (best , k i l l Sw i t c h) : (Future [Agent] , K i l l Sw i t ch) = loopingGraph (source , step , s ink) . run
16 scheduleOnce (someDuration) {
17 k i l l Sw i t c h . shutdown ()
18 }
19 best . onComplete (p r i n t l n)
Listing4Asimplifiedexampleof howadescriptionof the computation is constructedby specifying the initial source, the intermediate stepand
the final sink. Materializing the resulting graph starts an infinite stream and returns two values: a Future corresponding to the best solution
found by the end of the computation, and a switch to externally terminate the stream.

The step flow synchronously transforms one population into a new one, as shown in Listing 5. The population is first shuffled, then partitioned
according to agent behavior. Finally, every partition is transformed using themeetings function.

94 3.5. Execution model based on adaptive dataflows

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

8 Daniel Krzywicki, Łukasz Faber and RomanDębski

1 def step = Flow [Seq [Agent]] . map { populat ion =>
2 populat ion
3 . shu f f l ed
4 . groupBy (behaviorFunct ion)
5 . f latMap (meetingsFunction)
6 }
Listing 5 A simple synchronous step flow, where a population of agents is transformed into a new one by applying the behavior and meeting
functions (as in the classic EMAS).

Asynchronous Step
The step flow can be parallelised while maintaining discrete generations. The required design can be decomposed in two parts as follows.
First, we use a flow to transform a stream of individual agents, as shown in Figure 4 . The flow of input agents is partitioned into sub-streams

according to the behavior function.
On each sub-stream, agents are then grouped within a time and size windows. A size window of n means that we wait for n input elements

a1, ..., an to arrive before emitting a single element output element consisting of (a1, ..., an). A time window of t means that if only m < n input
elements have been received so far and t time have passed since the last onewas received, we emit (a1, ..., am) anyway.
Then, every emitted group is transformed in parallel using the meetings function. In order to satisfy the boundedness property, the number of

parallel meetings for each sub-flow is bounded by a parallelism parameter.
Themeetings corresponding to each behaviormaymodify agents, split them intomore agents or remove existing ones from the flow. The agents

resulting from all themeetings are eventually propagated into the output.

Partition
by Behavior

Grouped
Within Meeting

Meeting
Meeting

Merge

asynchronous
boundaries

Meeting
MeetingMeeting

Grouped
Within

FIGURE4 Arenas Flow:Modelingmeeting arenas as a flow in the stream. Agents are partitioned into sub-flows according to their behavior. In each
sub-flow, agents are grouped within a time or size window specific to the behavior. Every group then performs a meeting, which may yield some
output agents. The number of output agents from a meeting may be different from the number of input agents. Agents resulting from all meetings
are thenmerged into the output of the flow.

The second step in the design is lifting such a flow of agents into a flow of populationwhichwe could insert into a discrete generational loop. The
solution is illustrated in Figure 5 . After every input element, we start a sub-stream, which allow to define transformation of elements in terms of
streams. In the sub-stream, we transform the input population into a stream of constituent agents, forward them through the meeting arenas flow
and accumulate the results using a fold stage.

3.5. Execution model based on adaptive dataflows 95

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Daniel Krzywicki, Łukasz Faber and RomanDębski 9
The fold stage will emit a single element when its upstream is completed, i.e. all original agents have passed through the arenas flow. This output

elementwill simply be the newpopulation. For every input population,wewill thus start a sub-streamwhichwill produce a single output population,
andwe concatenating the outputs of such subsequent sub-streams into our output.

Start
Substreams

Arenas
Flow

Concat
Substreams

MapConcat +
Shuffle Fold

asynchronous
boundaries

FIGURE 5 Sequential Flow. For every input population element, we start a new substream, where we decompose the population into a stream of
agents, transform that stream through the arenas flow, then combine the results into a new population.

We need to use sub-streams so as to know when the stream of agents from a given population is over, so that the fold stage may emit the new
population. As wewill see in Section 3.4, the same semantics of a generational synchronisation can also be achieved in a different andmore general
way.

3.3 Continuous generations
The solution above is similar to the farm pattern, analysed in previous work on parallel skeleton patterns 15, where an input element is partitioned
and each partition is transformed in parallel before being recombined.
However, the main difference compared with previous work is that the use of reactive streams allows us to change the rate of elements and

consider the partitioning of a stream of agents, instead of the partitioning of a collection of agents.
Therefore, the next approach consists in dropping the concept of explicit populations and consider only a stream of agents in the looping graph.

Generations are no longer explicitly synchronized, agents are transformed continuously and agents from different generations canmeet freely.
One problem with a purely streaming solution is that it is mostly deterministic. In other words, it is similar to a First In First Out queue, from

whichwewould pop someagents from thebeginning, transform themandpush the resulting ones in the end. Inmost cases, agentswould keep inter-
acting with the same “neighbours”. In general, stronger stochastic properties are recommended in evolutionary algorithms to ensure exploratory
characteristics 16.
Introducing stochasticity in a stream is not trivial, as we no longer have the whole population under hand to be able to shuffle it. The looping

graphmay contain a buffer, but this bufferwill probably never contain thewhole population at any givenmoment, as some agentsmay be in internal
buffers thorough intermediate stages.
The solution used in this paper is based on a technique called “Reservoir Sampling” 17. Reservoir sampling is an algorithm for selecting randomor

representative elements from a stream of unknown size, possibly infinite. The algorithm maintains an internal pool of chosen elements. Each new
stream element replaces one in the internal pool with some probability, chosen so that when the stream is finished or interrupted, all elements so
far have had the same probability of ending up in the final pool.
We use a similar technique to introduce stochasticity in the stream of agents. As illustrated in Figure 6 , we introduce a shuffling buffer stage in

the step flow, ahead of the meeting arenas. The shuffling buffer maintains an internal pool of input elements. When pulled, it chooses the output
element based on some policy, effectively changing the order of elements in the stream. This buffer is distinct from the one in the looping graph, as
it has different purpose, semantics and capacity.
The use of a shuffling buffer abstraction introduces a powerful degree of freedom to the algorithm, as many different strategies can be

considered. In fact, as wewill see below, all previousmodels of execution can be considered special cases of such a shuffling buffer.

96 3.5. Execution model based on adaptive dataflows

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

10 Daniel Krzywicki, Łukasz Faber and RomanDębski

Shuffling
Buffer

Arenas
Flow

asynchronous
boundaries

FIGURE 6 Continuous Flow. Agents flow through a shuffling buffer, which potentially outputs them in a different order that they arrived, e.g. by
using reservoir sampling with an internal pool. Then, agents continue through the Arena flow described in Figure 4 .

3.4 Shuffling Buffer
The following section explores several shuffling buffers strategies implemented and benchmarked in this paper.

RandomBuffer
The simplest shuffling strategy is a buffer of fixed capacity, which chooses a random element when pulled. Therefore, elements will leave in a
different order that they entered, so the streamwill effectively be shuffled.
It is not a true permutation as wewould have to consume the whole stream to have a non-zero probability of seeing any potential input element

as the first output one.
However, elements have a non-zero probability of staying indefinitely long in the buffer. The bigger the size of the buffer, the longer elementswill

stay in average, and themore shuffled the streamwill seem.However, too big buffer can immobilize a significant part of the population and decrease
overall throughput.

Max Buffer
This strategy is similar to the previous one in that we immobilize a part of the stream in an internal buffer. However, the element chosen as the
output is always the onewhichmaximizes a givenmetric, in this case the fitness value associated with the agent.

Annealed Buffer
This strategy behaves like a random buffer with probability p, and like a max buffer with probability 1 − p. The value of p decreases every second
according to the formula pi = pi−1 · 2

−1
n . In other words, pwill be halved every n seconds, called the half-life time of the buffer. A max heap with

fixed time top and random removal is used as the backing data structure of this buffer.
The randombuffer strategy is actually a special case of an annealed buffer strategywith infinite half-life time, while themax buffer a special case

with lim→ 0 half-life time.

Barrier Buffer
The goal of that buffer is to simulate a generational evolutionary algorithm by introducing an explicit synchronisation barrier. The buffer is
configuredwith the total energy injected in themulti-agent system.
This buffer alternates between two states: open and closed.When closed, it accepts incoming agents but does not emit any in the output.When

the total energy of the agents in the buffer equals the expected total energy in the system, the buffer opens. When open, it does not accept any
incoming agents, but emits agents in the output until it become empty, when it closes again.
Therefore, agents from different generations are never mixed together. This buffer demonstrates that a continuous flow of agents is a more

general model, as the discrete generations are just a special case.
Theuseof this buffer allowsus to compare the characteristics specific to the semantics of discrete generations,while controlling for theoverhead

specific to the overall stream-based architecture.

3.5. Execution model based on adaptive dataflows 97

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Daniel Krzywicki, Łukasz Faber and RomanDębski 11

4 EXPERIMENTAL RESULTS
In this section we describe the optimisation problems used to test our model and we present numerical results of these tests. The main purpose of
the experiments was to evaluate the impact of the new execution model and its parameters on the semantics of the algorithm and also to validate
that the new executionmodel can simulate previous ones.

4.1 Optimisation Problem
Asmetaheuristics often havemultiple parameters and includemany operators, it is difficult to separate the effect of their different constituents on
the observed properties of the algorithm. In our case, we want to distinguish the properties of the different shuffling buffers and their impact on
the performance of the optimisation process. In order tominimise the effect of the choice of the evolutionary operators, we chose two optimisation
problems which have been well studied and for which good operators and their parameters are well known. As such, we applied our multi-agent
algorithm to the following two test problems: searching for the minimal values of the Rastrigin function (Eq. 1) and of the Ackley function (Eq. 2) –
two common benchmarking functions used to compare evolutionary algorithms 18.

f(x) = 10n+

n∑

i=1

(x2i − 10 cos(2πxi)) (1)

f(x) = −20 exp

−0.2

√√√√ 1

n

n∑

i=1

x2i


− exp

(
1

n

n∑

i=1

cos(2πxi)

)
+ 20 + e (2)

These functions are highlymultimodal with one global minimum equal to 0 at x̄ = 0 (Fig. 7)4. In the computational experiments we used a problem

FIGURE 7 Test functions (for n = 2): Rastrigin’s function (on the left) and Ackley’s function (on the right).

size n = 100 in a domain being the hypercube [−50, 50]100 for the Rastrigin function, and the hypercube [−33, 33]100 for the Ackley function. These
are the typical domains usedwhen using these test functions.

4.2 Methodology
The computations were run on AMDOpteron 6276 nodes using 12 cores and 2GB ofmemory. The duration of each experiment was set to 3 hours,
and each one was repeated 30 times in order to obtain statistically significant results. The results below are averaged over these 30 runs. Unless
otherwise specified, the graphs show the change of these average values over time together with 95% confidence intervals.

4One particular property of Rastrigin’s function is that values lower than 1 correspond to the basin of attraction of the global optimum.

98 3.5. Execution model based on adaptive dataflows

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

12 Daniel Krzywicki, Łukasz Faber and RomanDębski

Metrics
Themodels were evaluatedwith respect to two criteria: the efficiency and effectiveness of the optimisation.Wemeasured the effectiveness of the
algorithm by recording the best fitness found so far at any given time. In addition, we measured the efficiency by recording the number of fitness
evaluations performed so far at any given time.We combined thosemetrics to compute the best fitness found after a given number of evaluations.
The total number of evaluations that are performed vary over different runs. In order to compare meaningful averages, the plots of fitness over

evaluation count are truncated at the smallest number reported at the end across all runs of a given configuration.
A constant equal to 10−16 has been added to all fitness values plotted below in order to visualise the global optimum on a logarithmic scale. In

other words, a fitness value equal to 10−16 means the optimisation did reach the global optimum.

Configurations
We benchmarked two buffer strategies among those described in Section 3.4: “annealed buffer” and “barrier buffer”. The other variants can be
considered as special cases of the first one.
The “barrier buffer” corresponds to a sequential evolutionary algorithm with discrete generations (i.e. the classic EMAS). This strategy has no

relevant parameters.
The “annealed buffer” is a concurrent strategy with continuous generations. It has a p probability of selecting a random individual as the next

output and a 1− p probability of selecting the best one. p is initially equal to 1 and decreases exponentially as described below.
An annealed buffer is configuredwith the following two parameters:

buffer size – the size of the shuffling buffer,

half-life time (t 1
2
) – the time in seconds after which the probability p is halved. At the extremes, this buffer behaves like a random buffer when

lim p→ inf , and amax bufferwhen lim p→ 0

Wehave run the annealed buffer with the following combinations of parameters:
• three sizes of the buffer: 10, 40, 100;
• four values of the half-life time parameter t 1

2
: 60, 900, 3600 seconds and one version with deactivated decay (marked as inf in figures and

tables). The last configuration is semantically equivalent to a random buffer.

4.3 Results andDiscussion
Figures 8 and 9 show a summary of all possible configurations with the annealed buffer, while figure 10 shows results for the barrier buffer.
The results for the annealed buffer are detailed in the appendix. For the Rastrigin function, Figures A1 to A7 present the results along with

95% confidence intervals organised along the buffer size dimension (Figures A1 toA3) and along the half-life dimension (Figures A4 toA7). In a
similar way, for the Ackley function, Figures A10 to A16 present the results along with 95% confidence intervals, organised along the buffer size
dimension (Figures A10 to A12) and along the half-life dimension (Figures A13 to A16).
The total number of evaluations performed by the end of the computation differs across runs and configurations and is summarized in Tables 1

(for Rastrigin function) and 2 (for Ackley function). Median, maximum value and quartiles are represented as relative to themean.
Mean time series are only meaningful over the ranges of evaluation numbers for which we have data from all the runs of a given configuration.

Therefore, the “best” and “worst” runs of the annealed buffer are represented in Figures A8 to A9 (for the Rastrigin function) and Figures A17
to A18 (for the Ackley function).
The best andworst runs are defined as follows:
• when all runs reached zero, the best run is the onewhich reached it the first, and conversely for the worst run.
• when some run reached zero, the best is defined as above. The worst run is the one which had the worst (largest) fitness value at the end of
the computation.

• when no run reached zero, the worst is defined as above. The best run is the one which had the best (lowest) fitness value at the end of the
computation.

The first conclusions we can draw from Figures 8 and 10 is that the barrier buffer performs the worst by reaching average final values of the
order of 10−6 for the Rastrigin function. It is followed by the annealed buffer configured with no actual decay (which corresponds to a random
buffer) which reaches average final values of the order of 10−10. Similarly, for the Ackley function, these values are close to 10−4 and 10−5.
For theRastrigin function, other configurations of the annealing buffer performmuchbetter, reaching the global optimum (represented as10−16)

for almost half of the configurations, and reaching 10−12 in the worst ones. We can see in Figures A1 to A7 that the difference between the

3.5. Execution model based on adaptive dataflows 99

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Daniel Krzywicki, Łukasz Faber and RomanDębski 13
annealed buffer and both the barrier and random one is statistically significant. In the case of the Ackley function algorithm does not reach global
minimum but it still is significantly better than the barrier buffer version.
Interestingly, the annealed buffer performs better the longer the half-life time. As we can see in Figures A1 to A3 , this difference becomes

more significant the bigger the size of the buffer.
Our interpretation is that it results from the computational complexity of the annealed buffer implementation, which is a max heap. The

amortised cost of removing a random element is smaller than the cost of removing the maximum element. At higher half-life times, we end up
removing random elements relatively more often, which increases overall throughput. This explanation is further supported by the evidence that
the difference in throughput is more pronounced for bigger buffer sizes (Figures A4 to A6).

buf t 1
2

Min
Mean

1stQu.
Mean

Median
Mean

Mean 3rdQu.
Mean

Max
Mean

10 60 0.8498 0.9665 1.0029 98393543.8 1.0339 1.1351
10 900 0.8739 0.9521 0.9832 101290512.3 1.0333 1.1458
10 3600 0.7301 0.9658 1.0047 113997906.9 1.0523 1.1657
10 inf 0.4536 0.9020 0.9857 166991465.1 1.0871 1.3819
40 60 0.8937 0.9671 0.9918 61422435.7 1.0358 1.1257
40 900 0.9110 0.9509 0.9883 65373658.8 1.0485 1.1119
40 3600 0.8313 0.9419 1.0051 83298855.1 1.0380 1.1510
40 inf 0.8450 0.9582 1.0063 156417948.2 1.0447 1.2062
100 60 0.8688 0.9718 1.0128 52452528.5 1.0399 1.0879
100 900 0.8679 0.9552 0.9973 56551136.2 1.0610 1.1520
100 3600 0.8884 0.9719 1.0026 73827134.5 1.0441 1.1042
100 inf 0.7747 0.9370 1.0185 150022933.5 1.0406 1.2708
barrier (classic EMAS) 0.9683 0.9759 0.9977 65354200.0 1.0217 1.0440

TABLE 1 Statistics about the total number of fitness function evaluations by the end of the computation for each configuration for the Rastrigin
function. Themean is shown as an absolute value and all other statistics – as relative to themean. The first two columns represents the parameters
of a given configuration: buffer size and t 1

2
. The last row shows results for the barrier buffer.

buf t 1
2

Min
Mean

1stQu.
Mean

Median
Mean

Mean 3rdQu.
Mean

Max
Mean

10 60 0.7237 0.9811 1.0259 80342620.4 1.0657 1.1382
10 900 0.7930 0.9630 0.9958 87852715.5 1.0539 1.1649
10 3600 0.7060 0.9274 1.0401 90264469.0 1.1170 1.2070
10 inf 0.5760 1.0233 1.0508 133273703.7 1.0857 1.2441
40 60 0.9395 0.9706 0.9985 51211047.4 1.0205 1.1265
40 900 0.8250 0.9450 1.0128 54880279.1 1.0465 1.1903
40 3600 0.7600 0.9645 1.0072 70134972.1 1.0434 1.1555
40 inf 0.5395 0.9927 1.0666 130541931.0 1.1053 1.2026
100 60 0.9290 0.9699 0.9938 43627533.0 1.0430 1.0796
100 900 0.7947 0.9315 1.0186 46583632.7 1.0843 1.1891
100 3600 0.7471 0.9064 1.0509 60920639.6 1.0696 1.2396
100 inf 0.5205 0.9415 1.0578 132090258.7 1.1231 1.2440
barrier (classic EMAS) 0.9684 0.9870 1.0007 62029013.0 1.0132 1.0234

TABLE2 Statistics about the total number of fitness function evaluations by the endof the computation for each configuration theAckley function.
Themean is shown as an absolute value and all other statistics – as relative to themean. The first two columns represents the parameters of a given
configuration: buffer size and t 1

2
. The last row shows results for the barrier buffer.

100 3.5. Execution model based on adaptive dataflows

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

14 Daniel Krzywicki, Łukasz Faber and RomanDębski

FIGURE 8 Best fitness as a function of time for the annealed buffer. The upper chart shows results for Rastrigin function and the bottom one – for
Ackley function. The buf parameter is the buffer size, t1/2 the half-life value in seconds. A 10−16 constant has been added to results to visualize the
global optimum. Confidence intervals are omitted for clarity.

3.5. Execution model based on adaptive dataflows 101

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Daniel Krzywicki, Łukasz Faber and RomanDębski 15

FIGURE 9 Best fitness as a function of the number of evaluations for the annealed buffer. The upper chart shows results for Rastrigin function and
the bottom one – for Ackley function. The buf parameter is the buffer size, t1/2 the half-life value in seconds. A 10−16 constant has been added to
results to visualize the global optimum. Confidence intervals are omitted for clarity.

102 3.5. Execution model based on adaptive dataflows

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

16 Daniel Krzywicki, Łukasz Faber and RomanDębski

FIGURE 10 Best fitness as a function of time (on the left) and of evaluation number (on the right) in the barrier buffer (classic EMAS). Upper charts
shows results for Rastrigin function and bottom ones – for Ackley function. The black line represents the mean value and the lighter ribbon a 95%
confidence interval.

Tables 1 and2 shows statistics about thefinal numberof fitness evaluations performedonaverageby the endof each computation respectively
for Rastrigin and Ackley functions. We can notice that in all cases the longer the half-time t 1

2
, the larger the mean number of evaluations. The total

number of evaluations also decreases along with growing buffer size. In general, configurations with fully random buffer behaviour (t 1
2
= inf) were

able to perform more evaluations and had larger spread of evaluations count. These numbers are therefore coherent with our conclusions above
about how parameter values impact raw performance.

3.5. Execution model based on adaptive dataflows 103

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Daniel Krzywicki, Łukasz Faber and RomanDębski 17
Beyond throughput, we can draw more conclusions by considering the best fitness found after a given number of fitness function evaluations

(Figure 9).
The different configurations of the annealed buffer (with the exception of the infinite half-life time) behave very similarly – there is no significant

difference as evidenced by Figures A1 to A7 . In turn, the difference between these configurations and the barrier and random one is even more
significant when considered that way.
The choice of the size of the buffer turns out to be insignificant with regard to the properties of the algorithm (as evidenced by Figures A4

to A6). However, the value of half-life time can be significant (Figures A1 to A3).
As we can see, the choice of the shuffling buffer, and therefore of the concurrency semantics, turns out to have a significant impact on the char-

acteristics of the overall algorithm. The shuffling strategy turns out to be an important degree of freedom of the stream-based model we propose
and its choice is paramount. The results above provide directions for a further exploration of possible strategies.

5 RELATEDWORK
Simulated annealing (SA) is a stochastic search (optimisation) method inspired by the annealing process in metallurgy in which a solid is cooled until
its structure is eventually frozen at a minimum energy 19. In this analogy the (physical) material states correspond to points (candidate solutions) in
the search space, the energy of a state – to the cost (“goodness”) of a point (solution), and the temperature represents a control parameter. Several
methods to improve the basic SA algorithm have been proposed, for instance Cauchy annealing 20, simulated reannealing 21, generalized SA 22, and
SAwith known global value 23.
Classic evolutionary algorithms (such as the simple genetic algorithm 24, evolution strategies 12 etc.) are generally perceived as universal optimisa-

tion metaheuristics (cf. theory of Vose 25). They employ a simple model of evolution consisting of repeating, for subsequent generations, the same
process of selecting parents and producing offspring using variation operators. Although this approach has proved effective in many optimisation
problems (e.g. 26) it reveals some limitations when trying to parallelise the base algorithm (especially if it is to be adapted tomassively-parallel com-
puters). This is why only simple approaches to the parallelisation of such algorithms have been proposed (e.g. the master-slave model or parallel
evolutionary algorithm 27).
A multi-agent system (MAS) is a loosely coupled network (system) of agents that work together to solve problems that are beyond the individual

capabilities (or knowledge) of each agent 28,29,30. In MAS no global knowledge is available to individual agents 8; agents should remain autonomous
and no central authority should be needed. An overview of multi-agent systems (given from different perspectives) can be found in 31 and 28.
Examples of popular agent-oriented frameworks are Jadex 32, Jade 33 orMadKit 34).
Evolutionary Multi-Agent Systems (EMAS) 35 may be treated as general-purpose optimisation systems 36,37,38,16 which utilize key ideas from agent-

based simulations and evolutionary algorithms. In EMAS a population of agents (in the form of genotypes) evolve to improve their ability to solve
a particular problem. Selection in an EMAS is designed so that agents with good behaviour becomemore likely to reproduce. Many variants of this
mechanism have been proposed (an overview can be found in 7).
EMAS implementations (e.g. the AgE platform5) were applied to different optimisation problems (global, multi-criteria, multi-modal, in continuous

and discrete spaces) and the results showed superior performance in comparison to classic heuristics (see, for instance, 7,39,40,41,42).
Generation-free EMAS 2 bring evolutionary algorithms closer to their biological origins by removing generations (imposed by step-based imple-

mentation) from the algorithm. This approach introduces more concurrency and asynchronicity to the EMAS model and, as a result, also such
concepts as parallel ontogenesis. Agents may initiate actions at any possible time giving a nearly continuous-time simulation.
Massively-concurrent EMAS’s are best suited for closed, fine-grained concurrent systems, with a large number of lightweight (and often homoge-

neous) agents 43,44,2,45. In such a class of systems, the popular agent development platforms (e.g. Jade, Magentix) may be not suitable as they are
limited to several thousands of simultaneous agents on a single computer 43.
Functional multi-agent systems address the issue mentioned above (i.e. an inefficient use of multi-core CPUs in the shared-memory concurrency

model). Themostmature example of such a system (platform) is eXAT (erlang eXperimental Agent Tool) (see 46 and also 47). eXAT overcomes the basic
limitations of popular Java-based solutions as its agents are based on Erlang lightweight processes, andmillions of such processes can be created on
a single computer. Other Erlang-based solutions are discussed in 48 and 2. Haskell-based multi-agent systems are presented in 49 and 50. Examples
of a Scala-based implementations are shown in 44 and 1.
Dataflow is a broad term used in several computing related domains including hardware and software architectures (see, for instance, 4,51), con-

currency/execution models (see, for instance, 52,3) and programming languages (see, for instance, 53,54). In the dataflow execution model, a program
is represented by a directed graph that shows explicitly (by directed arcs) data dependencies. The initial motivation for the research into dataflow

5https://age.agh.edu.pl

104 3.5. Execution model based on adaptive dataflows

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

18 Daniel Krzywicki, Łukasz Faber and RomanDębski

(and parallel data-driven computation in general) was the exploitation of massive parallelism (see, for instance, above mentioned 4,3). Since then,
this model has receivedmuch attention. A review of this research field can be found, for instance, in 53.

6 CONCLUSION
We have introduced a formal description of the execution model for agent-based computing systems as an adaptive dataflow decoupled from the
domain-specific semantics of the computation. We have also shown that the execution models studied in previous works (for instance, the classic,
synchronous, population-basedEMASor generation-freeEMAS) canbeunified in this commonmodel. In addition,wehave analysed theparameters
of the model, such as queuing policies and granularity of the data in the flow. Following that, we have benchmarked several queuing alternatives
and demonstrated their effect on the efficiency of the computation. Using the example of a multi-agent evolutionary optimisation problem solver
we have shown that the new approach outperforms the classic one. This model we have described is “natural” for functional languages and can be
easily mapped into different classes of hardware – from simple, single-core computers to distributed environments.
Future research work could concentrate on:
• comparing (experimentally) the effectiveness of the proposed algorithm/approach to the wider range of alternative ones (for instance, to
the other optimisation heuristics or other multi-agent based simulation environments),

• studying the algorithm in other optimisation problems (both discrete and continuous ones),
• studying the scalability of this newmodel,
• experimenting withmore complex dataflows (for instance, the ones implementing the concept of islands andmigrations of agents),
• experimenting with somemore special configurations (cases) of themodel; in fact, the whole parameter space can be checked/searched,
• experimenting with different variants of adaptation (for instance, adaptive queuing policies and/or adaptive dataflow topologies can be
considered).

ACKNOWLEDGEMENT
The research presented in this paper was partially supported by the Polish Ministry of Science and Higher Education under the AGHUniversity of
Science and Technology grant (statutory project) no. 11.11.230.124 and by PL-Grid infrastructure6 at the ACCCyfronet AGH7

References
1. Krzywicki Daniel, Turek Wojciech, Byrski Aleksander, Kisiel-Dorohinicki Marek. Massively concurrent agent-based evolutionary computing.
Journal of Computational Science. 2015;11:153–162.

2. Krzywicki D., Stypka J., Anielski P., et al. Generation-free Agent-based Evolutionary Computing. Procedia Computer Science. 2014;29(0):1068 -
1077. 2014 International Conference on Computational Science.

3. Karp Richard M, Miller Rayamond E. Properties of a model for parallel computations: Determinacy, termination, queueing. SIAM Journal on
AppliedMathematics. 1966;14(6):1390–1411.

4. Gurd John R., KirkhamChris C.,Watson Ian. TheManchester prototype dataflow computer. Communications of the ACM. 1985;28(1):34–52.
5. Hammond K., Aldinucci M., Brown C., et al. The ParaPhrase project: Parallel patterns for adaptive heterogeneous multicore systems. In: 1, vol.
7542: Springer LNCS 2013 (pp. 218-236).

6. Stypka Jan, Anielski Piotr, Mentel Szymon, et al. Parallel patterns for agent-based evolutionary computing. Computer Science. 2016;17(1):83.

6http://www.plgrid.pl/en
7http://www.cyfronet.krakow.pl/en/

3.5. Execution model based on adaptive dataflows 105

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Daniel Krzywicki, Łukasz Faber and RomanDębski 19
7. Byrski Aleksander, Dreżewski Rafał, Siwik Leszek, Kisiel-Dorohinicki Marek. Evolutionary multi-agent systems. The Knowledge Engineering
Review. 2015;30(2):171–186.

8. Jennings N. R., Sycara K., Wooldridge M.. A Roadmap of Agent Research and Development. Journal of Autonomous Agents and Multi-Agent
Systems. 1998;1(1):7-38.

9. Mahfoud SamirW. A comparison of parallel and sequential nichingmethods. In: 1, vol. 136: :143; 1995.
10. Krzywicki Daniel. Niching in evolutionarymulti-agent systems. Computer Science. 2013;14.
11. Alba Enrique, Tomassini Marco. Parallelism and evolutionary algorithms. IEEE transactions on evolutionary computation. 2002;6(5):443–462.
12. Schwefel Hans-Paul, Rudolph Gunter. Contemporary Evolution Strategies. In: :893-907; 1995.
13. Dean Jeffrey, Ghemawat Sanjay. MapReduce: simplified data processing on large clusters. Communications of the ACM. 2008;51(1):107–113.
14. Turek Wojciech, Stypka Jan, Krzywicki Daniel, et al. Highly scalable Erlang framework for agent-based metaheuristic computing. Journal of

Computational Science. 2016;17:234–248.
15. HammondKevin, AldinucciMarco, BrownChristopher, et al. Parallel Patterns for AdaptiveHeterogeneousMulticore Systems. In: 1, vol. 7542:

:218Springer; 2013.
16. Byrski Aleksander, Schaefer Robert. Formal model for agent-based asynchronous evolutionary computation. In: :78–85IEEE; 2009.
17. Vitter Jeffrey S. Random sampling with a reservoir. ACM Transactions onMathematical Software (TOMS). 1985;11(1):37–57.
18. Bäck Thomas, SchwefelHans-Paul. An overviewof evolutionary algorithms for parameter optimization. Evolutionary computation.1993;1(1):1–

23.
19. Kirkpatrick Scott, Gelatt Jr CDaniel, VecchiMario P. Optimization by simulated annealing. In:World Scientific 1987 (pp. 339–348).
20. Szu Harold H, Hartley Ralph L. Nonconvex optimization by fast simulated annealing. Proceedings of the IEEE. 1987;75(11):1538–1540.
21. Ingber Lester. Very fast simulated re-annealing.Mathematical and computer modelling. 1989;12(8):967–973.
22. Tsallis Constantino, StarioloDaniel A. Generalized simulated annealing. Physica A: StatisticalMechanics and its Applications.1996;233(1-2):395–

406.
23. LocatelliMarco.Convergence andfirst hitting timeof simulatedannealing algorithms for continuous global optimization.MathematicalMethods

of Operations Research. 2001;54(2):171–199.
24. Goldberg D. E..Genetic algorithms in search, optimization, and machine learning. Addison-Wesley; 1989.
25. VoseM.. The Simple Genetic Algorithm: Foundations and Theory. Cambridge, MA, USA:MIT Press; 1998.
26. Dębski Roman, Dreżewski Rafał, Kisiel-Dorohinicki Marek. Maintaining population diversity in evolution strategy for engineering problems.

In: Nguyen Ngoc Thanh, Borzemski Leszek, Grzech Adam, Ali Moonis, eds. New Frontiers in Applied Artificial Intelligence, 1, vol. 5027: :379–
387Springer Berlin Heidelberg; 2008.

27. Cantú-Paz E.. A Survey of Parallel Genetic Algorithms. Calculateurs Paralleles, Reseaux et Systems Repartis. 1998;10(2):141-171.
28. Stone Peter, VelosoManuela. Multiagent systems: A survey from amachine learning perspective. Autonomous Robots. 2000;8(3):345–383.
29. Russell S. J., Norvig P.. Artificial Intelligence: AModern Approach. Prentice Hall; 3rd edition ed.2009.
30. Niazi Muaz, Hussain Amir. Agent-based computing from multi-agent systems to agent-based models: a visual survey. Scientometrics.

2011;89(2):479.
31. WooldridgeM.J.. An Introduction toMultiagent Systems. JohnWiley & Sons; 2009.
32. Pokahr Alexander, Braubach Lars, Jander Kai. The Jadex Project: ProgrammingModel.. 2013.

106 3.5. Execution model based on adaptive dataflows

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

20 Daniel Krzywicki, Łukasz Faber and RomanDębski

33. Bellifemine Fabio, Poggi Agostino, Rimassa Giovanni. JADE: A FIPA2000 Compliant Agent Development Environment. In: AGENTS ’01:216–
217ACM; 2001; NewYork, NY, USA.

34. Gutknecht Olivier, Ferber Jacques. The madkit agent platform architecture. Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-
Agent Systems. 2001;.

35. CetnarowiczK., Kisiel-DorohinickiM.,Nawarecki E.. The application of evolution process inmulti-agentworld (MAW) to the prediction system.
In: TokoroM., ed. Proc. of the 2nd Int. Conf. onMulti-Agent Systems (ICMAS’96), AAAI Press; 1996.

36. Byrski A., Schaefer R., Smołka M.. Asymptotic Guarantee of Success for Multi-Agent Memetic Systems. Bulletin of the Polish Academy of
Sciences—Technical Sciences. 2013;61(1).

37. Byrski Aleksander, Kisiel-Dorohinicki Marek. Agent-Based Model and Computing Environment Facilitating the Development of Distributed
Computational IntelligenceSystems. In:AllenGabrielle,Nabrzyski Jarosław, Seidel Edward,AlbadaGeertDick,Dongarra Jack, SlootPeterM.A.,
eds. Computational Science – ICCS 2009, Lecture Notes in Computer Science, vol. 5545: Springer Berlin Heidelberg 2009 (pp. 865-874).

38. Schaefer Robert, Byrski Aleksander, Kolodziej Joanna, Smolka Maciej. An Agent-based Model of Hierarchic Genetic Search. Comput. Math.
Appl.. 2012;64(12):3763–3776.

39. Korczyński Wojciech, Byrski Aleksander, Dębski Roman, Kisiel-Dorohinicki Marek. Classic and agent-based evolutionary heuristics for shape
optimization of rotating discs. Computing and Informatics. 2017;36(2):331–352.

40. Pisarski Sebastian, Rugała Adam, Byrski Aleksander, Kisiel-Dorohinicki Marek. Evolutionary Multi-Agent System in Hard Benchmark Contin-
uous Optimisation. In: Esparcia-Alcázar AnnaI., ed. Applications of Evolutionary Computation, Lecture Notes in Computer Science, vol. 7835:
Springer Berlin Heidelberg 2013 (pp. 132-141).

41. Byrski Aleksander. Tuning of agent-based computing. Computer Science. 2013;14(3)):491–512.
42. Wrobel Krzysztof, Torba Pawel, Paszynski Maciej, Byrski Aleksander. Evolutionary Multi-Agent Computing in Inverse Problems. Computer

Science (AGH). 2013;14(3):367–384.
43. TurekWojciech. Erlang as a High Performance Software Agent Platform. Advanced Methods and Technologies for Agent and Multi-Agent Systems.

2013;252:21.
44. Manate B., Munteanu V.I., Fortis T.-F.. Towards a ScalableMulti-agent Architecture forManaging IoTData. In: :270-275; 2013.
45. Byrski Aleksander, Dębski Roman, Kisiel-DorohinickiMarek. Agent-based computing in an augmented cloud environment. International Journal

of Computer Systems Science & Engineering. 2012;27(1):7–18.
46. Di Stefano Antonella, Santoro Corrado. Supporting agent development in Erlang through the eXAT platform. In: Springer 2005 (pp. 47–71).
47. PiotrowskiM., TurekW.. SoftwareAgentsMobilityUsingProcessMigrationMechanism inDistributedErlang. In: Erlang ’13:43–50ACM; 2013;

NewYork, NY, USA.
48. Díaz Á.F., Earle C.B., Fredlund L-A. eJason: An Implementation of Jason in Erlang. In: DastaniMehdi, Hübner J.F., Logan Brian, eds. Programming

Multi-Agent Systems, Lecture Notes in Computer Science, vol. 7837: Springer Berlin Heidelberg 2013 (pp. 1-16).
49. Frank Andrew U., Bittner Steffen, Raubal Martin. Spatial and Cognitive Simulation withMulti-agent Systems. In: Montello DanielR., ed. Spatial

Information Theory, Lecture Notes in Computer Science, vol. 2205: Springer Berlin Heidelberg 2001 (pp. 124-139).
50. Grigore Claudia, Collier Rem. Supporting agent systems in the programming language. In: :9–12IEEE Computer Society; 2011.
51. VoHuy T, Osmari Daniel K, SummaBrian, Comba João LD, Pascucci Valerio, Silva Cláudio T. Streaming-Enabled Parallel DataflowArchitecture

forMulticore Systems. In: 1, vol. 29: :1073–1082Wiley Online Library; 2010.
52. Akidau Tyler, Bradshaw Robert, Chambers Craig, et al. The dataflowmodel: a practical approach to balancing correctness, latency, and cost in

massive-scale, unbounded, out-of-order data processing. Proceedings of the VLDB Endowment. 2015;8(12):1792–1803.
53. JohnstonWesleyM, Hanna JR, Millar Richard J. Advances in dataflow programming languages. ACM Computing Surveys (CSUR). 2004;36(1):1–

34.

3.5. Execution model based on adaptive dataflows 107

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Daniel Krzywicki, Łukasz Faber and RomanDębski 21
54. Dennis Jack B. First version of a data flow procedure language. In: :362–376Springer; 1974.

APPENDIX
A THE IMPACTOF THE PARAMETERSOF THEMODELONTHEOPTIMIZATIONPROCESS

FIGURE A1 Rastrigin function. Best fitness value as a function of time (on the left) and evaluation number (on the right) for configurations of the
annealed buffer where the buffer size was equal to 10. A 10−16 constant has been added to results to visualize the global optimum. The darker line
represents themean value and the lighter ribbon shows a 95% confidence interval.

108 3.5. Execution model based on adaptive dataflows

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

22 Daniel Krzywicki, Łukasz Faber and RomanDębski

FIGURE A2 Rastrigin function. Best fitness value as a function of time (on the left) and evaluation number (on the right) for configurations of the
annealed buffer where the buffer size was equal to 40. A 10−16 constant has been added to results to visualize the global optimum. The darker line
represents themean value and the lighter ribbon shows a 95% confidence interval.

FIGURE A3 Rastrigin function. Best fitness value as a function of time (on the left) and evaluation number (on the right) for configurations of the
annealed bufferwhere the buffer sizewas equal to 100. A 10−16 constant has been added to results to visualize the global optimum. The darker line
represents themean value and the lighter ribbon shows a 95% confidence interval.

3.5. Execution model based on adaptive dataflows 109

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Daniel Krzywicki, Łukasz Faber and RomanDębski 23

FIGURE A4 Rastrigin function. Best fitness value as a function of time (on the left) and evaluation number (on the right) for configurations of the
annealed buffer where t 1

2
= 60s. A 10−16 constant has been added to results to visualize the global optimum. The darker line represents the mean

value and the lighter ribbon shows a 95% confidence interval.

FIGURE A5 Rastrigin function. Best fitness value as a function of time (on the left) and evaluation number (on the right) for configurations of the
annealed bufferwhere t 1

2
= 900s. A 10−16 constant has been added to results to visualize the global optimum. The darker line represents themean

value and the lighter ribbon shows a 95% confidence interval.

110 3.5. Execution model based on adaptive dataflows

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

24 Daniel Krzywicki, Łukasz Faber and RomanDębski

FIGURE A6 Rastrigin function. Best fitness value as a function of time (on the left) and evaluation number (on the right) for configurations of the
annealed buffer where t 1

2
= 3600s. A 10−16 constant has been added to results to visualize the global optimum. The darker line represents the

mean value and the lighter ribbon shows a 95% confidence interval.

FIGURE A7 Rastrigin function. Best fitness value as a function of time (on the left) and evaluation number (on the right), for configurations of the
annealed buffer where the t 1

2
parameter was disabled (therefore equivalent to a random buffer). A 10−16 constant has been added to results to

visualize the global optimum. The darker line represents themean value and the lighter ribbon shows a 95% confidence interval.

3.5. Execution model based on adaptive dataflows 111

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Daniel Krzywicki, Łukasz Faber and RomanDębski 25

(a)Buffer size: 10 (b)Buffer size: 40

(c)Buffer size: 100

FIGURE A8 Rastrigin function. Fitness as a function of the number of evaluation for the best and worst runs of the annealed buffer, for different
buffer sizes. A 10−16 constant has been added to results to visualize the global optimum.

112 3.5. Execution model based on adaptive dataflows

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

26 Daniel Krzywicki, Łukasz Faber and RomanDębski

(a) t 1
2

= 60s (b) t 1
2

= 900s

(c) t 1
2

= 3600s (d) t 1
2

= inf

FIGUREA9 Rastrigin function. Fitness as a function of the number of evaluation for the best andworst runs of the annealed buffer, for different t 1
2values. A 10−16 constant has been added to results to visualize the global optimum.

3.5. Execution model based on adaptive dataflows 113

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Daniel Krzywicki, Łukasz Faber and RomanDębski 27

FIGURE A10 Ackley function. Best fitness value as a function of time (on the left) and evaluation number (on the right) for configurations of the
annealed buffer where the buffer size was equal to 10. A 10−16 constant has been added to results to visualize the global optimum. The darker line
represents themean value and the lighter ribbon shows a 95% confidence interval.

FIGURE A11 Ackley function. Best fitness value as a function of time (on the left) and evaluation number (on the right) for configurations of the
annealed buffer where the buffer size was equal to 40. A 10−16 constant has been added to results to visualize the global optimum. The darker line
represents themean value and the lighter ribbon shows a 95% confidence interval.

114 3.5. Execution model based on adaptive dataflows

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

28 Daniel Krzywicki, Łukasz Faber and RomanDębski

FIGURE A12 Ackley function. Best fitness value as a function of time (on the left) and evaluation number (on the right) for configurations of the
annealed bufferwhere the buffer sizewas equal to 100. A 10−16 constant has been added to results to visualize the global optimum. The darker line
represents themean value and the lighter ribbon shows a 95% confidence interval.

FIGURE A13 Ackley function. Best fitness value as a function of time (on the left) and evaluation number (on the right) for configurations of the
annealed buffer where t 1

2
= 60s. A 10−16 constant has been added to results to visualize the global optimum. The darker line represents the mean

value and the lighter ribbon shows a 95% confidence interval.

3.5. Execution model based on adaptive dataflows 115

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Daniel Krzywicki, Łukasz Faber and RomanDębski 29

FIGURE A14 Ackley function. Best fitness value as a function of time (on the left) and evaluation number (on the right) for configurations of the
annealed bufferwhere t 1

2
= 900s. A 10−16 constant has been added to results to visualize the global optimum. The darker line represents themean

value and the lighter ribbon shows a 95% confidence interval.

FIGURE A15 Ackley function. Best fitness value as a function of time (on the left) and evaluation number (on the right) for configurations of the
annealed buffer where t 1

2
= 3600s. A 10−16 constant has been added to results to visualize the global optimum. The darker line represents the

mean value and the lighter ribbon shows a 95% confidence interval.

116 3.5. Execution model based on adaptive dataflows

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

30 Daniel Krzywicki, Łukasz Faber and RomanDębski

FIGURE A16 Ackley function. Best fitness value as a function of time (on the left) and evaluation number (on the right), for configurations of the
annealed buffer where the t 1

2
parameter was disabled (therefore equivalent to a random buffer). A 10−16 constant has been added to results to

visualize the global optimum. The darker line represents themean value and the lighter ribbon shows a 95% confidence interval.

3.5. Execution model based on adaptive dataflows 117

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Daniel Krzywicki, Łukasz Faber and RomanDębski 31

(a)Buffer size: 10 (b)Buffer size: 40

(c)Buffer size: 100

FIGURE A17 Ackley function. Fitness as a function of the number of evaluations for the best and worst runs of the annealed buffer, for different
buffer sizes. A 10−16 constant has been added to results to visualize the global optimum.

118 3.5. Execution model based on adaptive dataflows

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

32 Daniel Krzywicki, Łukasz Faber and RomanDębski

(a) t 1
2

= 60s (b) t 1
2

= 900s

(c) t 1
2

= 3600s (d) t 1
2

= inf

FIGUREA18 Ackley function. Fitness as a function of the number of evaluations for the best andworst runs of the annealed buffer, for different t 1
2values. A 10−16 constant has been added to results to visualize the global optimum.

3.5. Execution model based on adaptive dataflows 119

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

120 3.5. Execution model based on adaptive dataflows

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

4. Overview of Experimental Results

The different execution models described in Section 3 were subjected to experiments aimed at an-

alyzing their properties, both with regard to their raw efficiency as well as their possible impact on the

semantics of the algorithm. I summarize below the methodology and experimental results described in

more detail in the corresponding papers.

The experiments consisted in applying the multi-agent algorithm to classical optimization problems:

searching for the minimal values of the Rastrigin function or the Ackley function – common benchmark-

ing functions used to compare evolutionary algorithms [34]. These functions are highly multimodal with

one global minimum equal to 0 at x̄ = 0.

Methodology All the results were obtained by running simulations on the Pl-Grid1 infrastructure at

the ACC Cyfronet AGH2. The precise hardware used in experiments is detailed in every paper, but the

experiments were mostly run on 12 core nodes.

The actor-based execution model was implemented in Scala using the Akka library and also in native

Erlang. The skeleton-based model was implemented in Erlang using the Skel library 3. The dataflow-

based execution model was implemented in Scala using the Akka Streams library. The code of the im-

plementations is open source 4.

Metrics Two metrics were recorded in all experiments. The first was the best fitness value found so

far at any time. This metric measures how effective is the algorithm, for example by observing the

convergence to the known solution.

The second metric was the total number of fitness function evaluation performed at any time 5. It is an

estimation of the efficiency of the algorithm. In real-word optimization problems, the cost of computing

a single fitness value is usually high. Therefore, an algorithm which achieves similar results using less

fitness function evaluations is more efficient. Additionally, the number of fitness function evaluation

indicates the raw throughput of the system and is a useful measure of scalability.

1http://www.plgrid.pl/en
2http://www.cyfronet.krakow.pl/en/
3https://github.com/ParaPhrase/skel
4https://github.com/ParaPhraseAGH/erlang-mas, https://github.com/eleaar/scala-mas
5Some of the papers report on the number of agent reproductions. Fitness evaluation of the children happens after the

reproduction of the parents, therefore the two measures are strongly related

122

A third, derived metric is the best fitness value found after a given number of fitness function eval-

uations. Running the same algorithm on a faster node (or running a parallel algorithm on a node with

more cores) will allow to find the optimum faster, but in part because there will be more fitness function

evaluations in every unit of time. This metric "normalizes" the efficiency of the algorithm and as such

enables us to meaningfully compare experiments on different nodes, with different numbers of cores.

Results Several conclusions can be drawn from the experimental results across the publications. Some

selected graphs from the publications are included below for illustrative purposes.

The first conclusion is that all models exhibit very good scalability with regard to the number of cores

of the underlying node, at least as good as a trivial parallelization of the synchronous algorithm using the

island model (one environment per thread and intermittent agent migrations between threads) (Fig. 4.1).

This almost linear scalability has been demonstrated for up to 12 cores. Some further experiments suggest

that the skeleton-based model scales linearly well beyond, even up to 64 cores, but that is still subject of

ongoing research. In other words, decoupling the semantics of the algorithm from its execution model

does not hinder scalability.

Figure 4.1. The scalability of actor-based (left) and skeleton-based (right) execution

models. Both graphs illustrate the scalability of the number of agent reproductions in a

unit of time, which is proportional to the number of fitness evaluations during a unit of

time. On the left, the actor-based model is labeled as "concurrent", while the "hybrid"

one is a trivial parallelization of the synchronous model with concurrent islands.

The second conclusion is that the amount of concurrency in the computation has an impact on the

semantics of the algorithm. Both in the actor-based model and the dataFlow-based model, the normal-

ized efficiency of the optimization algorithm was significantly better than in the synchronous one (Fig.

4.2). In other words, a solution of the same quality could be reached within much less fitness evalua-

tions. This result was consistent no matter the number of cores or the parameters of the model itself.

The skeleton-base model, which has parallelism but no concurrency, behaved similar to the synchronous

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

123

Figure 4.2. The normalized efficiency of actor-based (left) and dataFlow-based (right)

execution models for the Rastrigin function, compared to equivalent synchronous

models. A 10−16 constant has been added to results to visualize the global optimum.

On the left, the actor-based model is labeled as "concurrent", while the "hybrid" one

is a trivial parallelization of the synchronous model with concurrent islands. On the

right, the better group of series correspond to the dataflow-based model with an an-

nealed shuffling policy, while the "flatter" group of series correspond to a emulated

synchronous model. Finally, note that the x-axis has different units in both graphs: 1

reproduction/s corresponds to 1-2 evaluations/s, so the dataflow-based model is even

more efficient than the actor-based one.

model, which further strengthen these results. The dataflow-based model was also slightly better than the

actor-based one.

Finally, the characteristics of the synchronous model emulated on the dataflow-based model are con-

sistent with those of the native synchronous model. This proves that the dataflow-based model is indeed

able to simulate other execution models.

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

124

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

5. Conclusions

The following dissertation is concerned with computationally demanding multi-agent systems,

in which the number of agents is very large and the interactions between them are intensive or non-

trivial. Interactions are intensive when they occur very often or when many calculations are needed to

determine their outcomes. They are non-trivial when it is not possible to predict beforehand and in a

general way which agents will interact with each other. The main subject of this dissertation has been

the concurrency of such interactions between agents, understood as the way agents perceive their inter-

actions and the effects of these. The manner in which interactions between agents are organized were

referred to as their concurrent execution model.

In the context of the objectives described in Section 1.2, the main results of this dissertation are

the following:

– I have formalized the concurrent execution model of agent-based computations as the composition

of a behavior and a meetings functions applied on a population of agents.

– I have shown that this formalization makes is possible to decouple the semantics of the algorithm

from the underlying execution model, on the example of a computationally intensive use case of

agent-based computing, namely Evolutionary Multi-Agent Systems.

– I have investigated, described, and implemented several concurrent execution models based on

different concurrency paradigms.

– I have performed an experimental assessment of the performance and efficiency of different con-

current execution models. I have shown how the choice of the execution model affects both the

behavior of the algorithm and of the efficiency of the computation.

– In particular, I demonstrated that in the case of solving an optimization problem, increased con-

currency leads to a significantly more efficient algorithm; the same results can be achieved using a

smaller number of fitness function evaluations.

– I have introduced a dataflow-based execution model which is efficient on modern multi-core hard-

ware and allows for controlling the concurrency of agent interactions to the extend that it is able to

simulate other execution models.

126 5.1. Contributions and achievements

5.1. Contributions and achievements

The main contributions from the research described in this dissertation are as follows:

– The separation of the semantics from the execution model of agent-based computation, demon-

strated in this dissertation, will make it possible to meaningfully compare alternative execution

models for the same algorithm, in order to make an informed choice to best match a specific hard-

ware architecture or problem size;

– Looking at the same from the opposite perspective, this decoupling also makes it possible to ex-

plore new execution models to best use the increasing capabilities of modern many-core hardware;

– In particular, the dataflow-based proves to be the most promising, both in terms of efficiency and

extensibility;

– More generally, the findings from this research could help to improve the existing software used

for agent-based computing and, consequently, allow for the modeling or solving of more complex

problems.

Publications This dissertation is based on the following series of publications discussing the different

aspects of the research objectives:

A.1 Daniel Krzywicki, Aleksander Byrski, Marek Kisiel-Dorohinicki

Computing agents for decision support systems

Future Generation Computer Systems, 2014.

MNiSW list A, 40 points, IF 2.786

A.2 Daniel Krzywicki, Wojciech Turek, Aleksander Byrski, Marek Kisiel-Dorohinicki

Massively concurrent agent-based evolutionary computing

Journal of Computational Science, 2015

MNiSW list A, 30 points, IF 1.078

A.3 Wojciech Turek, Jan Stypka, Daniel Krzywicki, Piotr Anielski, Kamil Pietak, Aleksander Byrski,

Marek Kisiel-Dorohinicki

Highly scalable Erlang framework for agent-based metaheuristic computing

Journal of Computational Science, 2016

MNiSW list A, 30 points, IF 1.748

A.4 Jan Stypka, Piotr Anielski, Szymon Mentel, Daniel Krzywicki, Wojciech Turek, Aleksander

Byrski, Marek Kisiel-Dorohinicki

Parallel patterns for agent-based evolutionary computing

Computer Science, 2016

MNiSW list B, 12 points

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

5.1. Contributions and achievements 127

A.5 Daniel Krzywicki, Łukasz Faber, Roman Dębski

Concurrent agent-based evolutionary computations as adaptive dataflows

Accepted for publication in Concurrency and Computation: Practice and Experience

MNiSW list A, 25 points, IF 1.133

The topic of this dissertation has also been explored in the following publications not included in the

above series:

B.1 Daniel Krzywicki, Łukasz Faber, Kamil Piętak, Aleksander Byrski, Marek Kisiel-Dorohinicki

Lightweight Distributed Component-oriented Multi-agent Simulation Platform

Proceedings of ECMS, 2013

MNiSW 10 points

B.2 Daniel Krzywicki, Jan Stypka, Piotr Anielski, Wojciech Turek, Aleksander Byrski, Marek Kisiel-

Dorohinicki

Generation-free agent-based evolutionary computing

Proceedings of ICCS, 2014

MNiSW 10 points

B.3 Grażyna Skiba, Mateusz Starzec, Aleksander Byrski, Katarzyna Rycerz, Marek Kisiel-

Dorohinicki, Wojciech Turek, Daniel Krzywicki, Tom Lenaerts, Juan C Burguillo

Flexible asynchronous simulation of iterated prisoner’s dilemma based on actor model

Simulation Modelling Practice and Theory, 2017

MNiSW list A, 25 points, IF 1.954

Citations As of this writing, my publications are indexed in the following databases:

– Web of Science

6 publications

40 citations

h-index = 4

– Scopus

6 publications

45 citations

h-index = 4

– Google Scholar

8 publications

57 citations

h-index = 4

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

128 5.1. Contributions and achievements

Conferences During my work on the subject of this dissertation, I have given presentations at the

following conferences:

– "Lightweight distributed component-oriented multi-agent simulation platform", 27th European

Conference on Modelling and Simulation ECMS 2013, Ålesund, Norway

– "The continuous evolution of asynchronous agents", Lambda Days 2014, Kraków, Poland

– "Generation-free Agent-based Evolutionary Computing", 14th International Conference on Com-

putational Science 2014, Cairns, Australia

– "Scaling functional multi-agent computations with reactive streams" Lambda Days 2018, Kraków,

Poland

Grants Part of the research described in this dissertation has been realized or supported through the

following grants:

– EU FP7 grant: "Paraphrase - Parallel Patterns for Adaptive Heterogeneous Multicore Systems"

– AGH Dean’s grant ("grant dziekański"): "Asynchroniczny model agentowych obliczeń

ewolucyjnych"

Scholarships During my participation in PhD studies, I was awarded with the following scholarships:

– AGH PhD scholarship ("stypendium doktoranckie") in years 2012/2013, 2013/2014, 2014/2015,

and 2015/2016

– AGH scholarship for best PhD students ("stypendium dla najlepszych doktorantów AGH") in years

2012/2013, 2013/2014, and 2014/2015

Commercial Applications Part of the open-source software created during the work on this disserta-

tion has found commercial application in the optimization of online advertisement search campaigns.

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

Bibliography

[1] François Bousquet and Christophe Le Page. “Multi-agent simulations and ecosystem manage-

ment: a review”. In: Ecological modelling 176.3-4 (2004), pp. 313–332.

[2] Bo Chen and Harry H Cheng. “A review of the applications of agent technology in traffic and

transportation systems”. In: IEEE Transactions on Intelligent Transportation Systems 11.2 (2010),

pp. 485–497.

[3] Yoav Shoham. “Agent-oriented programming”. In: Artificial intelligence 60.1 (1993), pp. 51–92.

[4] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. “JADE: A FIPA2000 Compliant

Agent Development Environment”. In: Proceedings of the Fifth International Conference on Au-

tonomous Agents. AGENTS ’01. Montreal, Quebec, Canada: ACM, 2001, pp. 216–217. ISBN:

1-58113-326-X. DOI: 10.1145/375735.376120.

[5] Wojciech Turek. “Erlang as a High Performance Software Agent Platform”. In: Advanced Methods

and Technologies for Agent and Multi-Agent Systems 252 (2013), p. 21.

[6] Michael Balmer, Kai Nagel, and Bryan Raney. “Large-scale multi-agent simulations for trans-

portation applications”. In: Intelligent Transportation Systems. Vol. 8. 4. Taylor & Francis. 2004,

pp. 205–221.

[7] Christophe Deissenberg, Sander Van Der Hoog, and Herbert Dawid. “EURACE: A massively

parallel agent-based model of the European economy”. In: Applied Mathematics and Computation

204.2 (2008), pp. 541–552.

[8] Aleksander Byrski et al. “Evolutionary multi-agent systems”. In: The Knowledge Engineering

Review 30.2 (2015), pp. 171–186.

[9] D. Krzywicki et al. “Computing agents for decision support systems”. In: Future Generation Com-

puter Systems (2014). ISSN: 0167-739X. DOI: http://dx.doi.org/10.1016/ j.future.2014.02.002.

[10] Sean Luke et al. “Mason: A multiagent simulation environment”. In: Simulation 81.7 (2005),

pp. 517–527.

[11] Łukasz Faber et al. “Agent-Based Simulation in AgE Framework”. In: Advances in Intelligent

Modelling and Simulation. Ed. by Aleksander Byrski et al. Vol. 416. Studies in Computational

Intelligence. Springer Berlin Heidelberg, 2012, pp. 55–83. ISBN: 978-3-642-28887-6. DOI: 10.

1007/978-3-642-28888-3_3.

https://doi.org/10.1145/375735.376120
https://doi.org/http://dx.doi.org/10.1016/j.future.2014.02.002
https://doi.org/10.1007/978-3-642-28888-3_3
https://doi.org/10.1007/978-3-642-28888-3_3

130 BIBLIOGRAPHY

[12] Daniel A Reed and Jack Dongarra. “Exascale computing and big data”. In: Communications of

the ACM 58.7 (2015), pp. 56–68.

[13] K. Cetnarowicz, M. Kisiel-Dorohinicki, and E. Nawarecki. “The application of evolution process

in multi-agent world (MAW) to the prediction system”. In: Proc. of the 2nd Int. Conf. on Multi-

Agent Systems (ICMAS’96). Ed. by M. Tokoro. AAAI Press, 1996.

[14] M. Vose. The Simple Genetic Algorithm: Foundations and Theory. Cambridge, MA, USA: MIT

Press, 1998. ISBN: 026222058X.

[15] D. E. Goldberg. Genetic algorithms in search, optimization, and machine learning. Addison-

Wesley, 1989.

[16] Hans-Paul Schwefel and Gunter Rudolph. “Contemporary Evolution Strategies”. In: European

Conference on Artificial Life. 1995, pp. 893–907.

[17] A. Byrski, W. Korczyński, and M. Kisiel-Dorohinicki. “Memetic Multi-Agent Computing in Dif-

ficult Continuous Optimisation”. In: Proceedings of 6th International KES Conference on Agents

and Multi-agent Systems Technologies and Applications, 2013, Hue City, Vietnam, IOS Press (ac-

cepted in 2013). Springer.

[18] S. Pisarski et al. “Evolutionary Multi-Agent System in Hard Benchmark Continuous Optimisa-

tion”. In: Proc. of EVOSTAR Conference, Vienna. IEEE (accepted for printing), 2013.

[19] Aleksander Byrski. “Tuning of Agent-based Computing”. In: Computer Science (accepted)

(2013).

[20] A. Byrski et al. “Evolutionary Multi-agent Systems”. In: The Knowledge Engineering Review

(2013 (accepted for printing)).

[21] Krzysztof Wrobel et al. “Evolutionary Multi-Agent Computing in Inverse Problems”. In: Com-

puter Science (AGH) 14.3 (2013), pp. 367–384. DOI: 10.7494/csci.2013.14.3.367.

[22] M. Polnik, M. Kumiega, and A. Byrski. “Agent-based optimization of advisory strategy parame-

ters”. In: Journal of Telecommunications and Information Technology 2 (2013), pp. 54–55.

[23] N. R. Jennings, K. Sycara, and M. Wooldridge. “A Roadmap of Agent Research and Develop-

ment”. In: Journal of Autonomous Agents and Multi-Agent Systems 1.1 (1998), pp. 7–38.

[24] S. W. Mahfoud. “A Comparison of Parallel and Sequential Niching Methods”. In: Proceedings of

the 6th International Conference on Genetic Algorithms. Ed. by L. J. Eshelman. Morgan Kauf-

mann, 1995, pp. 136–143.

[25] Daniel Krzywicki. “Niching in evolutionary multi-agent systems”. In: Computer Science 14

(2013).

[26] John Vlissides et al. “Design patterns: Elements of reusable object-oriented software”. In: Read-

ing: Addison-Wesley 49.120 (1995), p. 11.

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

https://doi.org/10.7494/csci.2013.14.3.367

BIBLIOGRAPHY 131

[27] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing on large clusters”.

In: Communications of the ACM 51.1 (2008), pp. 107–113.

[28] Carl Hewitt, Peter Bishop, and Richard Steiger. “Session 8 formalisms for artificial intelligence a

universal modular actor formalism for artificial intelligence”. In: Advance Papers of the Confer-

ence. Vol. 3. Stanford Research Institute. 1973, p. 235.

[29] Leslie Lamport. “Time, clocks, and the ordering of events in a distributed system”. In: Communi-

cations of the ACM 21.7 (1978), pp. 558–565.

[30] Murray I Cole. Algorithmic skeletons: structured management of parallel computation. Pitman

London, 1989.

[31] Christopher Brown et al. “Cost-directed refactoring for parallel Erlang programs”. In: Interna-

tional Journal of Parallel Programming 42.4 (2014), pp. 564–582.

[32] Aleksander Byrski and Robert Schaefer. “Formal model for agent-based asynchronous evolution-

ary computation”. In: Evolutionary Computation, 2009. CEC’09. IEEE Congress on. IEEE. 2009,

pp. 78–85.

[33] Jeffrey S Vitter. “Random sampling with a reservoir”. In: ACM Transactions on Mathematical

Software (TOMS) 11.1 (1985), pp. 37–57.

[34] Thomas Bäck and Hans-Paul Schwefel. “An overview of evolutionary algorithms for parameter

optimization”. In: Evolutionary computation 1.1 (1993), pp. 1–23.

D. Krzywicki Concurrent Execution Models for Agent-Based Computing Systems

	Introduction
	Motivation
	Research scope and objectives
	Structure of the dissertation

	Agent Interactions and Execution Models
	Use case: Evolutionary Multi-Agent Systems
	The execution model of agent interactions

	Concurrent Execution Models
	Abstracting the execution model
	Synchronous execution model
	Execution model based on actors
	Execution model based on parallel skeletons
	Execution model based on adaptive dataflows

	Overview of Experimental Results
	Conclusions
	Contributions and achievements

	Bibliography

